Residuos de plaguicidas en biomasa agrícola de chile (Capsicum annuum L.) usando un método QuEChERS acoplado a LC-MS/MS y GC-MS/MS

Pesticide residues in agricultural biomass of pepper (Capsicum annuum L.) using a QuEChERS method coupled to LC-MS/MS and GC-MS/MS

Autores/as

  • Luis Alfonso Jiménez-Ortega Centro de Investigación en Alimentación y Desarrollo
  • Pedro de Jesús Bastidas-Bastidas Centro de Investigación en Alimentación y Desarrollo
  • Octavio Valdez-Baro Centro de Investigación en Alimentación y Desarrollo
  • Manuel Alonzo Báez-Sañudo Centro de Investigación en Alimentación y Desarrollo
  • José Basilio Heredia Centro de Investigación en Alimentación y Desarrollo

DOI:

https://doi.org/10.32870/ecucba.vi20.301

Palabras clave:

Plaguicidad, chile, xenobióticos, cromatografía, biomasa agrícola

Resumen

La producción intensiva de cultivos hortícolas genera grandes cantidades de biomasa agrícola (BA), la cual es combustionada a campo abierto o depositada en vertederos convirtiéndose en un problema medioambiental, más aún si están contaminados por residuos de plaguicidas. El objetivo del estudio fue evaluar la presencia de plaguicidas en BA de pimiento morrón, chile jalapeño y chile poblano, utilizando un método QuEChERS acoplado a LC/MS-MS y GC/MS/MS. Se realizó un análisis de los límites máximos de residuos, contrastando diferentes normativas a nivel mundial. Se cuantificaron residuos de plaguicidas en los tres tipos de biomasa, siendo la de chiles jalapeño y poblano las más contaminadas, destacando por su presencia y cantidad lambda-cihalotrina (1.11 mg/kg⁻¹), bifentrina (1.62 mg/kg⁻¹), cipermetrina (0.34 mg/kg⁻¹), imidacloprid (4.51 mg/kg⁻¹) y ciromazina (4.04 mg/kg⁻¹). Se identificaron residuos de plaguicidas en la BA de chiles, por lo que su disposición se recomienda sea normada y monitoreada.

Citas

Aksakal, F.I. (2020). Evaluation of boscalid toxicity on Daphnia magna by using antioxidant enzyme activities, the expression of genes related to antioxidant and detoxification systems, and life-history parameters. Comparative Biochemistry and Physiology Part C: Toxicology y Pharmacology 237, 108830. https://doi.org/10.1016/j.cbpc.2020.108830

Anastassiades, M., Lehotay, S.J., Štajnbaher, D. y Schenck, F.J. (2003). Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. Journal of AOAC International, 86(2), 412-431. https://doi.org/10.1093/jaoac/86.2.412

Antonious, G.F. (2004). Residues and Half-Lives of Pyrethrins on Field-Grown Pepper and Tomato. Journal of Environmental Science and Health, Part B ,39(4), 491-503. https://doi.org/10.1081/PFC-200026682

Antonious, G.F., Ray, Z.M. y Rivers, L. (2007). Mobility of dimethoate residues from spring broccoli field. Journal of Environmental Science and Health, Part B, 42(1), 9-14. https://doi.org/10.1080/03601230601017593

Bal, R., Türk, G., Tuzcu, M., Yilmaz, O., Kuloglu, T., Gundogdu, R., Gur, S., Agca, A., Cambay, Z., Tuzcu, Z., Gencoglu, H., Guvenc, M., Ozsahin, A.D., Kocaman, K., Aslan, A. y Etem, E. (2012). Assessment of imidacloprid toxicity on reproductive organ system of adult male rats. Journal of Environmental Science and Health, Part B, 47(5), 434-444. https://doi.org/10.1080/03601234.2012.663311

Chen, S., Cai, L., Zhang, H., Zhang, Q., Song, J., Zhang, Z., Deng, Y., Liu, Y., Wang, X. y Fang, H. (2021). Deposition distribution, metabolism characteristics, and reduced application dose of difenoconazole in the open field and greenhouse pepper ecosystem. Agriculture, Ecosystems y Environment 313, 107370. https://doi.org/10.1016/j.agee.2021.107370

CODEX Alimentarius. (2021). LMR de plaguicidas. Recuperado el 19 de abril de 2023 de http://www.fao.org/faowhocodexalimentarius/codextexts/dbs/pestres/commodities-detail/es/lang=esyc_id=323 05/09/2021

COFEPRIS. (2021). Consulta de Registros Sanitarios de Plaguicidas, Nutrientes Vegetales y LMR. Recuperado el 19 de abril de 2023 de http://siipris03.cofepris.gob.mx/Resoluciones/Consultas/ConWebRegPlaguicida.asp 05/09/2021

da Costa Morais, E. H., Collins, C. H. y Jardim, I. C. S. F. (2018). Pesticide determination in sweet peppers using QuEChERS and LC–MS/MS. Food Chemistry 249, 77-83. https://doi.org/10.1016/j.foodchem.2017.12.092

FAO. (2022) FAOSTAT. Recuperado el 19 de abril de 2023 de http://www.fao.org/faostat/es/#data 06/09/2021

Farha, W., Abd El-Aty, A.M., Rahman, M. M., Shin, H.C. y Shim, J.H. (2016). An overview on common aspects influencing the dissipation pattern of pesticides: a review. Environmental Monitoring and Assessment 188(12), 693. https://doi.org/10.1007/s10661-016-5709-1

Feola, G. y Binder, C.R. (2010). Identifying and investigating pesticide application types to promote a more sustainable pesticide use. The case of smallholders in Boyacá, Colombia. Crop Protection, 29(6), 612-622. https://doi.org/10.1016/j.cropro.2010.01.008

Fernandes, T.S.M., Alcântara, D.B., Barbosa, P.G.A., Paz, M.S.D.O., Zocolo, G.J. y Nascimento, R.F.D. (2020). Matrix effect evaluation and method validation of organophosphorus pesticide residues in bell peppers (Capsicum annuum L.) by GC–MS determination. International Journal of Environmental Analytical Chemistry, 100(15), 1691-1706. https://doi.org/10.1080/03067319.2019.1657854

García, H.J., Leyva, M.J.B., Martínez, R.I.E., Hernández, O.M.I., Aldana, M.M.L., Rojas, G.A.E., Betancourt, L.M., Pérez, H.N.E. y Perera, R.J.H. (2018). Estado Actual de la Investigación Sobre Plaguicidas en México. Revista Internacional de Contaminación Ambiental 34:29-60. https://doi.org/10.20937/RICA.2018.34.esp01.03

Genualdi, S.A., Killin, R.K., Woods, J., Wilson, G., Schmedding, D. y Simonich, S. L. M. (2009). Trans-Pacific and Regional Atmospheric Transport of Polycyclic Aromatic Hydrocarbons and Pesticides in Biomass Burning Emissions to Western North America. Environmental Science y Technology, 43(4), 1061-1066. https://doi.org/10.1021/es802163c

Janner, D.E., Gomes, N.S., Poetini, M.R., Poleto, K.H., Musachio, E.A.S., de Almeida, F.P., Amador, E.C.M., Reginaldo, J.C., Ramborger, B.P., Roehrs, R., Prigol, M. y Guerra, G. P. (2021). Oxidative stress and decreased dopamine levels induced by imidacloprid exposure cause behavioral changes in a neurodevelopmental disorder model in Drosophila melanogaster. NeuroToxicology, 85, 79-89. https://doi.org/10.1016/j.neuro.2021.05.006

Karalexi, M.A., Tagkas, C.F., Markozannes, G., Tseretopoulou, X., Hernández, A.F., Schüz, J., Halldorsson, T.I., Psaltopoulou, T., Petridou, E.T., Tzoulaki, I. y Ntzani, E.E. (2021). Exposure to pesticides and childhood leukemia risk: A systematic review and meta-analysis. Environmental Pollution, 285, 117376. https://doi.org/10.1016/j.envpol.2021.117376

Khan, H. A.A. y Akram, W. (2017). Cyromazine resistance in a field strain of house flies, Musca domestica L.: Resistance risk assessment and bio-chemical mechanism. Chemosphere 167: 308-313. https://doi.org/10.1016/j.chemosphere.2016.10.018

Lehotay, S. J. (2007). Determination of Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate: Collaborative Study. Journal of AOAC International, 90(2), 485-520. https://doi.org/10.1093/jaoac/90.2.485

Leyva, M.J.B., Martínez, R.I.E., Bastidas, B.J. y Betancourt, L.M. (2017). Plaguicidas altamente peligrosos utilizados en el valle de Culiacán, Sinaloa. Recuperado el 19 de abril de 2023 de https://www.rapam.org/wp-content/uploads/2017/09/Libro-Plaguicidas-Final-14-agst-2017sin-portada.pdf

Li, Z. (2022). Modeling plant uptake of organic contaminants by root vegetables: The role of diffusion, xylem, and phloem uptake routes. Journal of Hazardous Materials 434:128911. https://doi.org/10.1016/j.jhazmat.2022.128911

Liu, J., Zhong, Y., Liu, J., Zhang, H., Xi, J., y Wang, J. (2010). An enzyme linked immunosorbent assay for the determination of cyromazine and melamine residues in animal muscle tissues. Food Control, 21(11), 1482-1487. https://doi.org/10.1016/j.foodcont.2010.04.018

Lucero, B. y Muñoz-Quezada, M. T. (2021). Neurobehavioral, Neuromotor, and Neurocognitive Effects in Agricultural Workers and Their Children Exposed to Pyrethroid Pesticides: A Review. Frontiers in Human Neuroscience. 15. https://doi.org/10.3389/fnhum.2021.648171

Martínez, V.C., Romano, C.G., Cuadras, B.A.A. y Ortega M.L.D. (2019). Plaguicidas, impacto en salud y medio ambiente en Sinaloa (México): implicaciones y retos en gobernanza ambiental. Trayectorias Humanas Transcontinentales, 4, 103-122. https://doi.org/10.25965/trahs.1615

Mei, J., Ge, Q., Han, L., Zhang, H., Long, Z., Cui, Y., Hua, R., Yu, Y y Fang, H. (2019). Deposition, Distribution, Metabolism, and Reduced Application Dose of Thiamethoxam in a Pepper-Planted Ecosystem. Journal of Agricultural and Food Chemistry, 67(43), 11848-11859. https://doi.org/10.1021/acs.jafc.9b02645

Nagendran, R. (2011). Chapter 24 - Agricultural Waste and Pollution. In T.M. Letcher y D.A. Vallero (Eds.), Waste (pp. 341-355). Academic Press. https://doi.org/10.1016/B978-0-12-381475-3.10024-5

Navarro, L., Camacho, R., López, J.E. y Saldarriaga, J.F. (2021). Assessment of the potential risk of leaching pesticides in agricultural soils: study case Tibasosa, Boyacá, Colombia. Heliyon 7(11), e08301. https://doi.org/10.1016/j.heliyon.2021.e08301

Oluseun, I. A. y Adebukola, A.O. (2020). Agricultural Solid Wastes: Causes, Effects, and Effective Management. In M. S. Hosam (Ed.), Strategies of Sustainable Solid Waste Management (pp. Ch. 10). IntechOpen. https://doi.org/10.5772/intechopen.93601

OMS. (2020). Clasificación recomendada por la OMS de los plaguicidas por el peligro que presentan y directrices para la clasificación de 2019. Recuperado el 19 de abril de 2023 de https://www.who.int/es/publications/i/item/9789240005662

Pérez, M.A., Navarro, H. y Miranda, E. (2013). Residuos de Plaguicidas en Hortalizas: Problemática y Riesgo en México. Revista Internacional de Contaminación Ambiental , 29, 45-65. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/41423

Qian, L., Cui, F., Yang, Y., Liu, Y., Qi, S. y Wang, C. (2018). Mechanisms of developmental toxicity in zebrafish embryos (Danio rerio) induced by boscalid. Science of The Total Environment, 634, 478-487. https://doi.org/10.1016/j.scitotenv.2018.04.012

Qian, L., Qi, S., Zhang, J., Duan, M., Schlenk, D., Jiang, J. y Wang, C. (2020). Exposure to Boscalid Induces Reproductive Toxicity of Zebrafish by Gender-Specific Alterations in Steroidogenesis. Environmental Science y Technology, 54(22), 14275-14287. https://doi.org/10.1021/acs.est.0c02871

Qian, L., Zhang, J., Chen, X., Qi, S., Wu, P., Wang, C. y Wang, C. (2019). Toxic effects of boscalid in adult zebrafish (Danio rerio) on carbohydrate and lipid metabolism. Environmental Pollution, 247, 775-782. https://doi.org/10.1016/j.envpol.2019.01.054

Rodríguez, A.B.A., Martínez R.L.M., Peregrina, L.A.A., Ortiz A.C.I. y Cárdenas H.O.G. (2019). Análisis de residuos de plaguicidas en el agua superficial de la cuenca del río Ayuquila-Armería, México. Terra Latinoamericana, 37(2), 151-161. https://doi.org/10.28940/terra.v37i2.462

Santiago-De la Rosa, N., Mugica-Álvarez, V., Cereceda-Balic, F., Guerrero, F., Yáñez, K., y Lapuerta, M. (2017). Emission factors from different burning stages of agriculture wastes in Mexico. Environmental Science and Pollution Research, 24(31): 24297-24310. https://doi.org/10.1007/s11356-017-0049-4

SEDER. (2016). Planeación Agrícola Nacional. Recuperado el 19 de abril de 2023 de https://www.gob.mx/cms/uploads/attachment/file/257072/Potencial-Chiles_y_Pimientos-parte_uno.pdf 05/09/2021

SIAP. (2022). Producción Agrícola. Recuperado el 19 de abril de 2023 de https://nube.siap.gob.mx/cierreagricola/

Singh, Y., Mandal, K. y Singh, B. (2015). Persistence and risk assessment of cypermethrin residues on chilli (Capsicum annuum L.). Environmental Monitoring and Assessment, 187(3), 120. https://doi.org/10.1007/s10661-015-4341-9

UE. (2021). EU pesticide database. Recuperado el 19 de abril de 2023 de https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=search.pr 05/09/2021

USDA. (2021). Pesticide Data Program. Recuperado el 19 de abril de 2023 de https://www.ams.usda.gov/datasets/pdp

Wahyuni, Y., Ballester, A.-R., Sudarmonowati, E., Bino, R. J. y Bovy, A.G. (2013). Secondary Metabolites of Capsicum Species and Their Importance in the Human Diet. Journal of Natural Products, 76(4), 783-793. https://doi.org/10.1021/np300898z

Wang, H., Meng, Z., Liu, F., Zhou, L., Su, M., Meng, Y., Zhang, S., Liao, X., Cao, Z. y Lu, H. (2020). Characterization of boscalid-induced oxidative stress and neurodevelopmental toxicity in zebrafish embryos. Chemosphere, 238, 124753. https://doi.org/10.1016/j.chemosphere.2019.124753

Yang, T., Doherty, J., Guo, H., Zhao, B., Clark, J. M., Xing, B., Hou, R. y He, L. (2019). Real-Time Monitoring of Pesticide Translocation in Tomato Plants by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 91(3), 2093-2099. https://doi.org/10.1021/acs.analchem.8b04522

Zhu, Y.-Z., Zhao, M.-A., Nan Feng, Y. y Han Kim, J. (2014). Multiresidue method for the determination of 227 pesticides in hot pepper (Capsicum annuum L.) by liquid chromatography with tandem mass spectrometry. Journal of Separation Science, 37(20), 2947-2954. https://doi.org/10.1002/jssc.201400536

Descargas

Publicado

2023-06-30

Cómo citar

Jiménez-Ortega, L. A., Bastidas-Bastidas, P. de J., Valdez-Baro, O., Báez-Sañudo, M. A., & Basilio Heredia, J. (2023). Residuos de plaguicidas en biomasa agrícola de chile (Capsicum annuum L.) usando un método QuEChERS acoplado a LC-MS/MS y GC-MS/MS: Pesticide residues in agricultural biomass of pepper (Capsicum annuum L.) using a QuEChERS method coupled to LC-MS/MS and GC-MS/MS. E-CUCBA, (20), 92–102. https://doi.org/10.32870/ecucba.vi20.301