Quitosano: actividad antimicrobiana y mecanismos de acción

Autores/as

  • Rafael Jiménez Mejía
  • María Teresa Arceo Martínez
  • Pedro Damián Loeza Lara

DOI:

https://doi.org/10.32870/e-cucba.v0i9.98

Palabras clave:

Policatión, antifúngico, antibacteriano, mecanismos de acción.

Resumen

En la actualidad, las restricciones en el uso de compuestos químicos sintéticos en la producción, procesamiento y conservación de los alimentos, así como en la salud humana y animal, han permitido una demanda importante de materiales versátiles para su uso en dichas áreas. El quitosano es un biopolímero catiónico que, además de ser un compuesto seguro, posee propiedades antifúngicas y antibacterianas, características que lo posicionan como un material importante. Los reportes de la actividad antimicrobiana del quitosano datan de los años 80´s; sin embargo, estudios in vitro e in vivo muestran la importancia de analizar las nuevas características de esta molécula. Asimismo, en la última década, diversos grupos de investigación se han dado a la tarea de estudiar sus mecanismos de acción, cuyos resultados han permitido el planteamiento de diversos modelos, los cuales se basan en la interacción del quitosano con diferentes blancos celulares.    

Citas

Ahmed, S. & S. Ikram. 2015. Chitosan & its derivatives: a review in recent innovations. International Journal of Pharmaceutical Sciences and Research 6: 14-30.

Bae, K., E.J. Jun, S.M. Lee, D.I. Paik & J.B. Kim. 2006. Effect of water-soluble reduced chitosan on Streptococcus mutans, plaque regrowth and biofilm vitality. Clinical Oral Investigations 10: 102-7.

Bautista-Baños, S., R.I. Ventura-Aguilar, Z. Correa-Pacheco & M.L. Corona-Rangel. 2017. Chitosan: a versatile antimicrobial polysaccharide for fruit and vegetables in postharvest a review. Revista Chapingo Serie Horticultura 23: 103-121.
Burkatovskaya, M., G.P. Tegos, E. Swietlik, T.N. Demidova, A.P. Castano & M.R. Hamblin. 2006. Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomaterials 27: 4157-4164.

Choi, B.K., K.Y. Kim, Y.J. Yoo, S.J. oh, J.H. Choi & C.Y. Kim. 2001. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. International Journal of Antimicrobial Agents 18: 553-557.

Costa, E., S. Silva, F. Tavaria & M. Pintado. 2014. Antimicrobial and antibiofilm activity of chitosan on the oral pathogen Candida albicans. Pathogens 3: 908-919.

Costa, E.M., S. Silva, F.K. Tavaria & M.M. Pintado. 2013. Study of the effects of chitosan upon Streptococcus mutans adherence and biofilm formation. Anaerobe 20: 27-31.

El Ghaouth, A., J. Arul, A. Asselin & N. Benhamou. 1992a. Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and citological alterations in Rhizopus stolonifer. Mycological Research 96: 769-779.

El Ghaouth, A., J. Arul, J. Grenier & A. Asselin. 1992b. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 82: 398-402.

Eweis, M., S.S. Elkholy & M.Z. Elsabee. 2006. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. International Journal of Biological Macromolecules 38: 1-8.

Ganan, M., A.V. Carrascosa, & A.J. Martínez-Rodríguez. 2009. Antimicrobial activity of chitosan against Campylobacter spp. and other microorganisms and its mechanism of action. Journal of Food Protection 72: 1735-1738.

García-Rincón, J., J. Vega-Pérez, M.G. Guerra-Sánchez, A.N. Hernández-Lauzardo, A. Peña-Díaz & M.G. Velázquez-Del Valle. 2010. Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Pesticide Biochemistry and Physiology 97: 275-278.

Goy, C.R., D. De Britto & O.B.G. Assis. 2009. A review of the antimicrobial activity of chitosan. Polímeros: Ciencia e Tecnologia 19: 241-247.

Guo, Z., R. Xing, S. Liu, Z. Zhong, X. Ji, L. Wang & P. Li. 2008. The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydrate Polymers 71: 694-697.
Hernández-Lauzardo, A.N., M.G. Velázquez-Del Valle & M.G. Guerra-Sánchez. 2011. Current status of action mode and effect of chitosan against phytopathogens fungi. African Journal of Microbiology Research 5: 4243-4247.

Kelly, S.L., D.C. Lamb, D.E. Kelly, N.J. Manning, J. Loeffler, H. Hebart, U. Schumacher & H. Einsele. 1997. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol Δ5,6-desaturation. FEBS Microbiology Letters 400: 80-82.

Kong, M., X.G. Chen, K. Xing & H.J. Park. 2010. Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology 144: 51-63.

Liu, H., Y. Du, X. Wang & L. Sun. 2004. Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology 95: 147-55.

Liu, J., S. Tian, X. Meng & Y. Xu. 2007. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology 44: 300-306.

Martínez, L.R., M.R. Mihu, M. Tar, R.J.B. Cordero, G. Han, A.J. Friedman, J.M. Friedman & J.D. Nosanchuk. 2010. Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. The Journal of Infectious Diseases 201: 1436-1440.

Palma-Guerrero, J., I. Huang, H. Jansson, J. Salinas, L. López-Llorca & N. Read. 2009. Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner. Fungal Genetics and Biology 46: 585-594.

Palma-Guerrero, J., H. Jansson, J. Salinas & L. López-Llorca. 2008. Effect of chitosan on hyphal and spore germination of plant pathogenic and biocontrol fungi. Journal of Applied Microbiology 104: 541-553.

Raafat, D., K. Von Bargen, A. Haas & H.G. Sahl. 2008. Insights into the mode of action of chitosan as an antibacterial compound. Applied and Environmental Microbiology 74: 3764-3773.

Romanazzi, G., E. Feliziani, M. Satini & L. Landi. 2013. Effectiveness of postharvest treatment with chitosan and others resistance inducers in the control of storage decay of strawberry. Postharvest Biology and Technology 75: 24-27.

Tsai, G.J., W.H. Su, H.C. Chen & C.L. Pan. 2002. Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fisheries Science 68: 170-77.
Verlee, A., S. Mincke & Ch.V. Stevens. 2017. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers 164: 268-283.

Xu, J., X. Zhao, X. Han & Y. Du. 2007a. Antifungal activity of oligochitosan against Phytophthora capsici and other pathogenic fungi in vitro. Pesticide Biochemistry and Physiology 87: 220-228.

Xu, J., X. Zhao, X. Wang, Z. Zhao & Y. Du. 2007b. Oligochitosan inhibits Phytophthora capsici by penetrating the cell membrane and putative binding to intracellular target. Pesticide Biochemistry and Physiology 88: 167-175.

Zhang, H., R. Li & W. Liu. 2011. Effects of chitin and its derivative chitosan on postharvest decay of fruits: A review. International Journal of Molecular Sciences 12: 917-934.

Descargas

Publicado

2018-12-20

Cómo citar

Jiménez Mejía, R., Arceo Martínez, M. T., & Loeza Lara, P. D. (2018). Quitosano: actividad antimicrobiana y mecanismos de acción. E-CUCBA, (9), 17–23. https://doi.org/10.32870/e-cucba.v0i9.98

Número

Sección

Artículos