Trastornos cerebrales por consumo de sustancias adictivas y su asociación con la excitotoxicidad

Brain Disorders Due to Addictive Substance Use and Their Association with Excitotoxicity

Autores/as

  • Rafael de Jesús Macias Vélez Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Andrea Reyes Rivera Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Martha Catalina Rivera Cervantes Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Jorge Peregrina Sandoval Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.

Palabras clave:

Vía mesolíbica, glutamato, dopamina, drogas de abuso, daño neuronal

Resumen

Los trastornos adictivos implican múltiples regiones cerebrales vinculadas a la recompensa, la emoción, la memoria, el control de impulsos y la motricidad. Entre las áreas más afectadas están el sistema dopaminérgico mesolímbico, la corteza prefrontal, el hipocampo, la amígdala, el cerebelo y los ganglios basales; estas estructuras presentan cambios que varían según la etapa y la severidad de la adicción. La adicción se describe como una enfermedad cerebral crónica caracterizada por compulsión al consumo, pérdida de control y estados emocionales negativos durante la abstinencia

Una base celular clave del daño es la excitotoxicidad, creada principalmente por la desregulación del sistema glutamatérgico. El exceso de glutamato genera procesos neurotóxicos que perjudican la comunicación neuronal y la plasticidad sináptica, contribuyendo al deterioro cognitivo, a hábitos compulsivos y a la reducción del control ejecutivo. En este marco, las interacciones entre glutamato y dopamina adquieren particular relevancia en regiones como el área tegmental ventral, el núcleo accumbens y la corteza prefrontal, donde influyen en el desarrollo y mantenimiento de los trastornos adictivos. En conjunto, estos mecanismos señalan una red cerebral integrada que se desequilibra con la exposición continuada a sustancias o comportamientos adictivos, perpetuando la vulnerabilidad y complicando la recuperación.

Citas

Andersen, J. V., Markussen, K. H., Jakobsen, E., Schousboe, A., Waagepetersen, H. S., Rosenberg, P. A., y Aldana, B. I. (2021). Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology, 196, 108719. https://doi.org/10.1016/j.neuropharm.2021.108719

Asociación Estadounidense de Psiquiatría. (2020). Manual diagnóstico y estadístico de los trastornos mentales (5ª ed.). American Psychiatric Publishing, Washington D.C., EE.UU. 947 pp.

Blaker, A.L., Moore, E.R., y Yamamoto, B.K. (2019). Serial exposure to ethanol drinking and methamphetamine enhances glutamate excitotoxicity. Journal of Neurochemistry, 151(6), 749–763. https://doi.org/10.1111/jnc.14861

Buck, S. A., Torregrossa, M. M., Logan, R. W., y Freyberg, Z. (2021). Roles of dopamine and glutamate co-release in the nucleus accumbens in mediating the actions of drugs of abuse. The FEBS journal, 288(5), 1462–1474. https://doi.org/10.1111/febs.15496

Cederberg, H.H., Uhd N.C., y Brodin, B. (2014). Glutamate efflux at the blood-brain barrier: cellular mechanisms and potential clinical relevance. Archives of Medical Research, 45(8), 639–645. https://doi.org/10.1016/j.arcmed.2014.11.004

Cox, M.F., Hascup E.R., Bartke A., y Hascup K.N. (2022). Friend or Foe? Defining the role of glutamate in aging and Alzheimer's disease. Frontiers in Aging, 3, 929474. https://doi.org/10.3389/fragi.2022.929474

D'Souza, M. S. (2019). Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Frontiers in psychiatr, 10, 509. https://doi.org/10.3389/fpsyt.2019.00509

Dhanabalan, G., Le Maître, T.W., Bogdanovic, N., Alkass, K., y Druid H. (2018). Hippocampal granule cell loss in human chronic alcohol abusers. Neurobiology of Disease, 120, 63–75. https://doi.org/10.1016/j.nbd.2018.08.011

Ebrahimi, M.N., M. Banazadeh, Z. Alitaneh, A. J. Suha, A. Esmaeili, B. Hasannejad-Asl, A. Siahposht-Khachaki, A. Hassanshahi., y S. Bagheri-Mohammadi. (2024). The distribution of neurotransmitters in the brain circuitry: Mesolimbic pathway and addiction. Physiology & Behavior, 284, 114639. https://doi.org/10.1016/j.physbeh.2024.114639

Feltenstein, M. W., See, R. E., y Fuchs, R. A. (2021). Neural Substrates and Circuits of Drug Addiction. Cold Spring Harbor perspectives in Medicine, 11(4), a039628. https://doi.org/10.1101/cshperspect.a039628

Fouyssac, M., y Belin, D. (2019). Beyond drug-induced alteration of glutamate homeostasis, astrocytes may contribute to dopamine-dependent intrastriatal functional shifts that underlie the development of drug addiction: A working hypothesis. The European journal of Neuroscience, 50(6), 3014–3027. https://doi.org/10.1111/ejn.14416

Frischknecht, U., Hermann, D., Tunc-Skarka, N., Wang, G. Y., Sack, M., van Eijk, J., Demirakca, T., Falfan-Melgoza, C., Krumm, B., Dieter, S., Spanagel, R., Kiefer, F., Mann, K. F., Sommer, W. H., Ende, G., y Weber-Fahr, W. (2017). Negative association between MR-spectroscopic glutamate markers and gray matter volume after alcohol withdrawal in the hippocampus: a translational study in humans and rats. Alcoholism: Clinical and Experimental Research, 41(2), 323–333. https://doi.org/10.1111/acer.13308

Gao, K. y Yu A. C. H. (2025). Glutamate, a key for astrocytes to participate in brain function and diseases. Neurochemical Research, 50(3), 166. https://doi.org/10.1007/s11064-025-04418-7

Gerace, E., Landucci, E., Bani, D., Moroni, F., Mannaioni, G., y Pellegrini-Giampietro, D. E. (2019). Glutamate Receptor-Mediated Neurotoxicity in a Model of Ethanol Dependence and Withdrawal in Rat Organotypic Hippocampal Slice Cultures. Frontiers in neuroscience, 12, 1053. https://doi.org/10.3389/fnins.2018.01053

Goodwani, S., Saternos, H., Alasmari,F., y Sari, Y. (2017). Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neuroscience and Biobehavioral Reviews, 77, 14–31. https://doi.org/10.1016/j.neubiorev.2017.02.024

Hawkins, R.A., y Vina, J.R. (2016). How glutamate is managed by the blood–brain barrier. Biology, 5(4), 37. https://doi.org/10.3390/biology5040037

Jenner, P., y Caccia, C. (2019). The role of glutamate in the healthy brain and in the pathophysiology of Parkinson’s disease. European Neurology Review, 14(2), 2–12. https://touchneurology.com/?p=15460

Kamal, H., Tan, G.C., Ibrahim, S.F., Shaikh, M.F., Mohamed, I.N., Mohamed, R.M.P., Hamid, A.A., Ugusman, A., y Kumar, J. (2020). Alcohol Use Disorder, Neurodegeneration, Alzheimer’s and Parkinson’s Disease: Interplay Between Oxidative Stress, Neuroimmune Response and Excitotoxicity. Frontiers in Cellular Neuroscience, 14, 282. https://doi.org/10.3389/fncel.2020.00282

Koob, G.F. (2021). Drug Addiction: Hyperkatifeia/Negative Reinforcement as a Framework for Medications Development. Pharmacological Reviews, 73(1), 163–201. https://doi.org/10.1124/pharmrev.120.000083

Koob, G.F., y Volkow, N.D. (2016). Neurobiology of addiction: a neurocircuitry analysis. The Lancet Psychiatry, 3(8), 760–773. https://doi.org/10.1016/S2215-0366(16)00104-8

Mohammadi, H., Jamshidi, S., Khajehpour, H., Adibi, I., Rahimiforoushani, A., Karimi, S., Dadashi Serej, S., y Riyahi Alam, N. (2024). Unveiling glutamate dynamics: Cognitive demands in human short-term memory learning across frontal and parieto-occipital cortex: A functional MRS study. Journal of Biomedical Physics & Engineering, 14(6), 519–532. https://doi.org/10.31661/jbpe.v0i0.2407-1789

Nentwig, T.B., Obray, J.D., Kruyer, A., Wilkes, E.T., Vaughan, D.T., Scofield, M.D., y Chandler L.J. (2025). Central amygdala astrocyte plasticity underlies GABAergic dysregulation in ethanol dependence. Translational Psychiatry, 15(1), 132. https://doi.org/10.1038/s41398-025-03337-z

Organización Mundial de la Salud. (2022). Clasificación Internacional de Enfermedades: Undécima Revisión (CIE-11). Guía de referencia. OMS.

Pal, M. M. (2021). Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Frontiers in human neuroscience, 15, 722323. https://doi.org/10.3389/fnhum.2021.722323

Reiner, A., y Levitz, J. (2018). Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron, 98(6), 1080–1098. https://doi.org/10.1016/j.neuron.2018.05.018

Volkow, N. D., Michaelides, M., y Baler, R. (2019). The Neuroscience of Drug Reward and Addiction. Physiological reviews, 99(4), 2115–2140. https://doi.org/10.1152/physrev.00014.2018

Descargas

Publicado

2026-01-01

Cómo citar

Macias Vélez, R. de J., Reyes Rivera, A., Rivera Cervantes, M. C., & Peregrina Sandoval, J. (2026). Trastornos cerebrales por consumo de sustancias adictivas y su asociación con la excitotoxicidad: Brain Disorders Due to Addictive Substance Use and Their Association with Excitotoxicity. E-CUCBA, (27), 08–15. Recuperado a partir de http://e-cucba.cucba.udg.mx/index.php/e-Cucba/article/view/409

Artículos más leídos del mismo autor/a