Brain Disorders Due to Addictive Substance Use and Their Association with Excitotoxicity
Brain Disorders Due to Addictive Substance Use and Their Association with Excitotoxicity
Keywords:
Mesolimbic pathway, glutamate, dopamine, drugs of abuse, neuronal damageAbstract
Drug use disorders involve multiple brain regions linked to reward, emotion, memory, impulse control, and motor function. Among the most affected areas are the mesolimbic dopaminergic system, the prefrontal cortex, the hippocampus, the amygdala, the cerebellum, and the basal ganglia; these structures show changes that vary with the stage and severity of addiction. Addiction is described as a chronic brain disease characterized by compulsive use, loss of control, and negative emotional states during withdrawal.
A key cellular basis of damage is excitotoxicity, mainly driven by dysregulation of the glutamatergic system. Excess glutamate triggers neurotoxic processes that impair neuronal communication and synaptic plasticity, contributing to cognitive decline, compulsive habits, and reduced executive control. In this framework, interactions between glutamate and dopamine become particularly relevant in regions such as the ventral tegmental area, nucleus accumbens, and prefrontal cortex, where they influence the development and maintenance of addictive disorders. Together, these mechanisms point to an integrated brain network that becomes imbalanced with continued exposure to substances or addictive behaviors, perpetuating vulnerability and hindering recovery.
References
Andersen, J. V., Markussen, K. H., Jakobsen, E., Schousboe, A., Waagepetersen, H. S., Rosenberg, P. A., y Aldana, B. I. (2021). Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology, 196, 108719. https://doi.org/10.1016/j.neuropharm.2021.108719
Asociación Estadounidense de Psiquiatría. (2020). Manual diagnóstico y estadístico de los trastornos mentales (5ª ed.). American Psychiatric Publishing, Washington D.C., EE.UU. 947 pp.
Blaker, A.L., Moore, E.R., y Yamamoto, B.K. (2019). Serial exposure to ethanol drinking and methamphetamine enhances glutamate excitotoxicity. Journal of Neurochemistry, 151(6), 749–763. https://doi.org/10.1111/jnc.14861
Buck, S. A., Torregrossa, M. M., Logan, R. W., y Freyberg, Z. (2021). Roles of dopamine and glutamate co-release in the nucleus accumbens in mediating the actions of drugs of abuse. The FEBS journal, 288(5), 1462–1474. https://doi.org/10.1111/febs.15496
Cederberg, H.H., Uhd N.C., y Brodin, B. (2014). Glutamate efflux at the blood-brain barrier: cellular mechanisms and potential clinical relevance. Archives of Medical Research, 45(8), 639–645. https://doi.org/10.1016/j.arcmed.2014.11.004
Cox, M.F., Hascup E.R., Bartke A., y Hascup K.N. (2022). Friend or Foe? Defining the role of glutamate in aging and Alzheimer's disease. Frontiers in Aging, 3, 929474. https://doi.org/10.3389/fragi.2022.929474
D'Souza, M. S. (2019). Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Frontiers in psychiatr, 10, 509. https://doi.org/10.3389/fpsyt.2019.00509
Dhanabalan, G., Le Maître, T.W., Bogdanovic, N., Alkass, K., y Druid H. (2018). Hippocampal granule cell loss in human chronic alcohol abusers. Neurobiology of Disease, 120, 63–75. https://doi.org/10.1016/j.nbd.2018.08.011
Ebrahimi, M.N., M. Banazadeh, Z. Alitaneh, A. J. Suha, A. Esmaeili, B. Hasannejad-Asl, A. Siahposht-Khachaki, A. Hassanshahi., y S. Bagheri-Mohammadi. (2024). The distribution of neurotransmitters in the brain circuitry: Mesolimbic pathway and addiction. Physiology & Behavior, 284, 114639. https://doi.org/10.1016/j.physbeh.2024.114639
Feltenstein, M. W., See, R. E., y Fuchs, R. A. (2021). Neural Substrates and Circuits of Drug Addiction. Cold Spring Harbor perspectives in Medicine, 11(4), a039628. https://doi.org/10.1101/cshperspect.a039628
Fouyssac, M., y Belin, D. (2019). Beyond drug-induced alteration of glutamate homeostasis, astrocytes may contribute to dopamine-dependent intrastriatal functional shifts that underlie the development of drug addiction: A working hypothesis. The European journal of Neuroscience, 50(6), 3014–3027. https://doi.org/10.1111/ejn.14416
Frischknecht, U., Hermann, D., Tunc-Skarka, N., Wang, G. Y., Sack, M., van Eijk, J., Demirakca, T., Falfan-Melgoza, C., Krumm, B., Dieter, S., Spanagel, R., Kiefer, F., Mann, K. F., Sommer, W. H., Ende, G., y Weber-Fahr, W. (2017). Negative association between MR-spectroscopic glutamate markers and gray matter volume after alcohol withdrawal in the hippocampus: a translational study in humans and rats. Alcoholism: Clinical and Experimental Research, 41(2), 323–333. https://doi.org/10.1111/acer.13308
Gao, K. y Yu A. C. H. (2025). Glutamate, a key for astrocytes to participate in brain function and diseases. Neurochemical Research, 50(3), 166. https://doi.org/10.1007/s11064-025-04418-7
Gerace, E., Landucci, E., Bani, D., Moroni, F., Mannaioni, G., y Pellegrini-Giampietro, D. E. (2019). Glutamate Receptor-Mediated Neurotoxicity in a Model of Ethanol Dependence and Withdrawal in Rat Organotypic Hippocampal Slice Cultures. Frontiers in neuroscience, 12, 1053. https://doi.org/10.3389/fnins.2018.01053
Goodwani, S., Saternos, H., Alasmari,F., y Sari, Y. (2017). Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neuroscience and Biobehavioral Reviews, 77, 14–31. https://doi.org/10.1016/j.neubiorev.2017.02.024
Hawkins, R.A., y Vina, J.R. (2016). How glutamate is managed by the blood–brain barrier. Biology, 5(4), 37. https://doi.org/10.3390/biology5040037
Jenner, P., y Caccia, C. (2019). The role of glutamate in the healthy brain and in the pathophysiology of Parkinson’s disease. European Neurology Review, 14(2), 2–12. https://touchneurology.com/?p=15460
Kamal, H., Tan, G.C., Ibrahim, S.F., Shaikh, M.F., Mohamed, I.N., Mohamed, R.M.P., Hamid, A.A., Ugusman, A., y Kumar, J. (2020). Alcohol Use Disorder, Neurodegeneration, Alzheimer’s and Parkinson’s Disease: Interplay Between Oxidative Stress, Neuroimmune Response and Excitotoxicity. Frontiers in Cellular Neuroscience, 14, 282. https://doi.org/10.3389/fncel.2020.00282
Koob, G.F. (2021). Drug Addiction: Hyperkatifeia/Negative Reinforcement as a Framework for Medications Development. Pharmacological Reviews, 73(1), 163–201. https://doi.org/10.1124/pharmrev.120.000083
Koob, G.F., y Volkow, N.D. (2016). Neurobiology of addiction: a neurocircuitry analysis. The Lancet Psychiatry, 3(8), 760–773. https://doi.org/10.1016/S2215-0366(16)00104-8
Mohammadi, H., Jamshidi, S., Khajehpour, H., Adibi, I., Rahimiforoushani, A., Karimi, S., Dadashi Serej, S., y Riyahi Alam, N. (2024). Unveiling glutamate dynamics: Cognitive demands in human short-term memory learning across frontal and parieto-occipital cortex: A functional MRS study. Journal of Biomedical Physics & Engineering, 14(6), 519–532. https://doi.org/10.31661/jbpe.v0i0.2407-1789
Nentwig, T.B., Obray, J.D., Kruyer, A., Wilkes, E.T., Vaughan, D.T., Scofield, M.D., y Chandler L.J. (2025). Central amygdala astrocyte plasticity underlies GABAergic dysregulation in ethanol dependence. Translational Psychiatry, 15(1), 132. https://doi.org/10.1038/s41398-025-03337-z
Organización Mundial de la Salud. (2022). Clasificación Internacional de Enfermedades: Undécima Revisión (CIE-11). Guía de referencia. OMS.
Pal, M. M. (2021). Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Frontiers in human neuroscience, 15, 722323. https://doi.org/10.3389/fnhum.2021.722323
Reiner, A., y Levitz, J. (2018). Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron, 98(6), 1080–1098. https://doi.org/10.1016/j.neuron.2018.05.018
Volkow, N. D., Michaelides, M., y Baler, R. (2019). The Neuroscience of Drug Reward and Addiction. Physiological reviews, 99(4), 2115–2140. https://doi.org/10.1152/physrev.00014.2018
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rafael de Jesús Macias Vélez, Andrea Reyes Rivera, Martha Catalina Rivera Cervantes, Jorge Peregrina Sandoval

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



