Papel de las células supresoras de origen mieloide y Arginasa-1 en cáncer de endometrio
Role of Myeloid-Derived Suppressor Cells and Arginase-1 in Endometrial Cancer
Palabras clave:
Cánce ginecológico, sistema inmune, células inmunes inmaduras, desarrollo del cáncerResumen
El cáncer de endometrio es el cuarto cáncer ginecológico más frecuente a nivel mundial, mientras que en México se posiciona en el quinto lugar. En los últimos años, se ha asociado el porcentaje de células supresoras de origen mieloide (MDSCs) y las concentraciones séricas de Arginasa-1 con un peor pronóstico para los pacientes con cáncer. Las MDSCs son células inmunitarias inmaduras, producidas por una mielopoyesis alterada. Presentan características fenotípicas y morfológicas inmaduras, así como funciones antiinflamatorias e inmunosupresoras que pueden promover el crecimiento tumoral en comparación con sus homólogas maduras. Las MDSCs producen diversas moléculas, incluyendo la arginasa-1, enzima que desempeña un papel en el ciclo de la urea y otros procesos celulares. En el cáncer, la Arginasa-1 puede suprimir la función de las células T y las células natural killer (NK), lo que también contribuye a la evasión inmune de las células tumorales. Además de ayudar a promover la actividad de las MDSCs. En este artículo se describen aspectos relevantes de las células supresoras de origen mieloide y la Arginasa-1, así como su papel en el desarrollo del cáncer de endometrio.
Citas
Bahena-González, A., Isla-Ortiz, D., Trejo-Durán, E., Arango-Bravo, E., Cano-Blanco, C., Morales-Vásquez, F., et al. (2023). Oncoguía de cáncer de endometrio 2023. LAJCSMT, 5(1), 194-205. https://doi.org/10.34141/LJCS5711966
Baessler, A., & Vignali, D. A. A. (2024). T Cell Exhaustion. Annual Review of Immunology, 42(1), 179-206. https://doi.org/10.1146/annurev-immunol-090222-110914
Bergerud, K. M. B., Berkseth, M., Pardoll, D. M., Ganguly, S., Kleinberg, L. R., Lawrence, J., et al. (2024). Radiation Therapy and Myeloid-Derived Suppressor Cells: Breaking Down Their Cancerous Partnership. International Journal of Radiation Oncology*Biology*Physics, 119(1), 42-55. https://doi.org/10.1016/j.ijrobp.2023.11.050
Bianco, B., Barbosa, C. P., Trevisan, C. M., Laganà, A. S., & Montagna, E. (2020). Endometrial cancer: a genetic point of view. Translational Cancer Research, 9(12), 7706-7715. https://doi.org/10.21037/tcr-20-2334
Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 5(8), 641-654. https://doi.org/10.1038/nri1668
Castillo Vidrio, G. M. (2023). Supervivencia libre de enfermedad en pacientes con diagnóstico de cáncer de endometrio etapas clínicas I y II e histología serosa tratadas con quimioterapia y radioterapia adyuvante en el Hospital en Oncología de Centro Médico Siglo XXI durante el periodo de 2015 a 2020 [Tesis de especialidad, Universidad Nacional Autónoma de México]. Repositorio DGB-UNAM. https://ru.dgb.unam.mx/server/api/core/bitstreams/b529ebde-e283-4e40-92e0-79e31581aaa5/content
Chelmow, D., Brooks, R., Cavens, A., Huber-Keener, K., Scott, D. M., Sheth, S. S., et al. (2022). Executive Summary of the Uterine Cancer Evidence Review Conference. Obstetrics & Gynecology, 139(4), 626-643. https://doi.org/10.1097/AOG.0000000000004711
Chiba, Y., Mizoguchi, I., Hasegawa, H., Ohashi, M., Orii, N., Nagai, T., et al. (2018). Regulation of myelopoiesis by proinflammatory cytokines in infectious diseases. Cellular and Molecular Life Sciences, 75(8), 1363-1376. https://doi.org/10.1007/s00018-017-2724-5
Dakal, T. C., George, N., Xu, C., Suravajhala, P., & Kumar, A. (2024). Predictive and Prognostic Relevance of Tumor-Infiltrating Immune Cells: Tailoring Personalized Treatments against Different Cancer Types. Cancers, 16(9), 1626. https://doi.org/10.3390/cancers16091626
De Visser, K. E., & Joyce, J. A. (2023). The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 41(3), 374-403. https://doi.org/10.1016/j.ccell.2023.02.016
Degos, C., Heinemann, M., Barrou, J., Boucherit, N., Lambaudie, E., Savina, A., et al. (2019). Endometrial Tumor Microenvironment Alters Human NK Cell Recruitment, and Resident NK Cell Phenotype and Function. Frontiers in Immunology, 10, 877. https://doi.org/10.3389/fimmu.2019.00877
Derbyshire, A. E., Allen, J. L., Gittins, M., Lakhiani, B., Bolton, J., Shaw, J., et al. (2021). PROgesterone Therapy for Endometrial Cancer Prevention in Obese Women (PROTEC) Trial: A Feasibility Study. Cancer Prevention Research, 14(2), 263-274. https://doi.org/10.1158/1940-6207.CAPR-20-0248
Dey, D. K., Krause, D., Rai, R., Choudhary, S., Dockery, L. E., & Chandra, V. (2023). The role and participation of immune cells in the endometrial tumor microenvironment. Pharmacology & Therapeutics, 251, 108526. https://doi.org/10.1016/j.pharmthera.2023.108526
Dyduch, G., Miążek, A., Laskowicz, Ł., & Szpor, J. (2023). Distribution of DC Subtypes: CD83+, DC-LAMP+, CD1a+, CD1c+, CD123+, and DC-SIGN+ in the Tumor Microenvironment of Endometrial Cancers—Correlation with Clinicopathologic Features. International Journal of Molecular Sciences, 24(3), 1933. https://doi.org/10.3390/ijms24031933
Fakhri, S., Moradi, S. Z., Abbaszadeh, F., Faraji, F., Amirian, R., Sinha, D., et al. (2024). Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals. Cancer Metastasis Reviews, 43(1), 261-292. https://doi.org/10.1007/s10555-023-10161-8
Gong, H., Zhao, J., Xu, W., Wan, Y., Mu, X., & Zhang, M. (2023). The distribution of myeloid-derived suppressor cells subsets and up-regulation of programmed death-1/PD-L1 axis in peripheral blood of adult CAP patients. PLoS ONE, 18(9), e0291455. https://doi.org/10.1371/journal.pone.0291455
Grzywa, T. M., Sosnowska, A., Matryba, P., Rydzynska, Z., Jasinski, M., Nowis, D., et al. (2020). Myeloid Cell-Derived Arginase in Cancer Immune Response. Frontiers in Immunology, 11, 938. https://doi.org/10.3389/fimmu.2020.00938
Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12(1), 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059
Harajka, A., Hercsik, T., Das Virgens, I. P. A., Máthé, I., Tornyossy, Z., AlFarwi, A., et al. (2025). Association of oral contraceptives and risk of endometrial cancer: A systematic review and meta-analysis. Acta Obstetricia et Gynecologica Scandinavica, 104(4), 591-603. https://doi.org/10.1111/aogs.15043
Hiam-Galvez, K. J., Allen, B. M., & Spitzer, M. H. (2021). Systemic immunity in cancer. Nature Reviews Cancer, 21(6), 345-359. https://doi.org/10.1038/s41568-021-00347-z
Jewell, E. L., Huang, J. J., Abu-Rustum, N. R., Gardner, G. J., Brown, C. L., Sonoda, Y., et al. (2014). Detection of sentinel lymph nodes in minimally invasive surgery using indocyanine green and near-infrared fluorescence imaging for uterine and cervical malignancies. Gynecologic Oncology, 133(2), 274-277. https://doi.org/10.1016/j.ygyno.2014.02.028
Jou, E., Chaudhury, N., & Nasim, F. (2024). Novel therapeutic strategies targeting myeloid-derived suppressor cell immunosuppressive mechanisms for cancer treatment. Exploration of Targeted Anti-tumor Therapy, 5(1), 187-207. https://doi.org/10.37349/etat.2024.00212
Lasser, S. A., Ozbay Kurt, F. G., Arkhypov, I., Utikal, J., & Umansky, V. (2024). Myeloid-derived suppressor cells in cancer and cancer therapy. Nature Reviews Clinical Oncology, 21(2), 147-164. https://doi.org/10.1038/s41571-023-00846-y
Law, A. M. K., Valdes-Mora, F., & Gallego-Ortega, D. (2020). Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells, 9(3), 561. https://doi.org/10.3390/cells9030561
Li, K., Shi, H., Zhang, B., Ou, X., Ma, Q., Chen, Y., et al. (2021). Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduction and Targeted Therapy, 6(1), 362. https://doi.org/10.1038/s41392-021-00670-9
Liu, X., Sun, H., Liang, J., Yu, H., Xue, M., Li, Y., et al. (2025). Metabolic interplay between endometrial cancer and tumor-associated macrophages: lactate-induced M2 polarization enhances tumor progression. Journal of Translational Medicine, 23(1), 923. https://doi.org/10.1186/s12967-025-06235-6
Ma, T., Renz, B. W., Ilmer, M., Koch, D., Yang, Y., Werner, J., et al. (2022). Myeloid-Derived Suppressor Cells in Solid Tumors. Cells, 11(2), 310. https://doi.org/10.3390/cells11020310
Mabuchi, S., & Sasano, T. (2021). Myeloid-Derived Suppressor Cells as Therapeutic Targets in Uterine Cervical and Endometrial Cancers. Cells, 10(5), 1073. https://doi.org/10.3390/cells10051073
Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J. H., Apolloni, E., Serafini, P., et al. (2002). Myeloid Suppressor Lines Inhibit T Cell Responses by an NO-Dependent Mechanism. The Journal of Immunology, 168(2), 689-695. https://doi.org/10.4049/jimmunol.168.2.689
Molaro, M. C., Battisegola, C., Schiano, M. E., Failla, M., Rimoli, M. G., Lazzarato, L., et al. (2025). Synthesis of Arginase Inhibitors: An Overview. Pharmaceutics, 17(1), 117. https://doi.org/10.3390/pharmaceutics17010117
Niu, F., Yu, Y., Li, Z., Ren, Y., Li, Z., Ye, Q., et al. (2022). Arginase: An emerging and promising therapeutic target for cancer treatment. Biomedicine & Pharmacotherapy, 149, 112840. https://doi.org/10.1016/j.biopha.2022.112840
Noman, M. Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., et al. (2014). PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. Journal of Experimental Medicine, 211(5), 781-790. https://doi.org/10.1084/jem.20131916
Raber, P., Ochoa, A. C., & Rodríguez, P. C. (2012). Metabolism of L-Arginine by Myeloid-Derived Suppressor Cells in Cancer: Mechanisms of T cell suppression and Therapeutic Perspectives. Immunological Investigations, 41(6-7), 614-634. https://doi.org/10.3109/08820139.2012.680634
Rios-Doria, E., Abu-Rustum, N. R., Alektiar, K. M., Makker, V., Liu, Y. L., Zamarin, D., et al. (2024). Prognosis of isolated tumor cells and use of molecular classification in early stage endometrioid endometrial cancer. International Journal of Gynecological Cancer, 34(9), 1373-1381. https://doi.org/10.1136/ijgc-2024-005522
Roerden, M., & Spranger, S. (2025). Cancer immune evasion, immunoediting and intratumour heterogeneity. Nature Reviews Immunology, 25(5), 353-369. https://doi.org/10.1038/s41577-024-01111-8
S. Clemente, G., Van Waarde, A., F. Antunes, I., Dömling, A., & H. Elsinga, P. (2020). Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. International Journal of Molecular Sciences, 21(15), 5291. https://doi.org/10.3390/ijms21155291
Safarzadeh, E., Asadzadeh, Z., Safaei, S., Hatefi, A., Derakhshani, A., Giovannelli, F., et al. (2020). MicroRNAs and lncRNAs—A New Layer of Myeloid-Derived Suppressor Cells Regulation. Frontiers in Immunology, 11, 572323. https://doi.org/10.3389/fimmu.2020.572323
Shi, W., Wu, W., Wang, J., & Meng, X. (2024). Single-cell transcriptomics reveals comprehensive microenvironment and highlights the dysfunctional state of NK cells in endometrioid carcinoma. Medicine, 103(13), e37555. https://doi.org/10.1097/MD.0000000000037555
Sun, Y., Jiang, G., Wu, Q., Ye, L., & Li, B. (2023). The role of tumor-associated macrophages in the progression, prognosis and treatment of endometrial cancer. Frontiers in Oncology, 13, 1213347. https://doi.org/10.3389/fonc.2023.1213347
Suszczyk, D., Skiba, W., Jakubowicz-Gil, J., Kotarski, J., & Wertel, I. (2021). The Role of Myeloid-Derived Suppressor Cells (MDSCs) in the Development and/or Progression of Endometriosis-State of the Art. Cells, 10(3), 677. https://doi.org/10.3390/cells10030677
Vanderstraeten, A., Luyten, C., Verbist, G., Tuyaerts, S., & Amant, F. (2014). Mapping the immunosuppressive environment in uterine tumors: implications for immunotherapy. Cancer Immunology, Immunotherapy, 63(6), 545-557. https://doi.org/10.1007/s00262-014-1537-8
Vonwirth, V., Bülbül, Y., Werner, A., Echchannaoui, H., Windschmitt, J., Habermeier, A., et al. (2021). Inhibition of Arginase 1 Liberates Potent T Cell Immunostimulatory Activity of Human Neutrophil Granulocytes. Frontiers in Immunology, 11, 617699. https://doi.org/10.3389/fimmu.2020.617699
Wang, X., Xiang, H., Toyoshima, Y., Shen, W., Shichi, S., Nakamoto, H., et al. (2023). Arginase-1 inhibition reduces migration ability and metastatic colonization of colon cancer cells. Cancer & Metabolism, 11(1), 1. https://doi.org/10.1186/s40170-022-00301-z
Wang, Y., Liu, N., Guo, X., Han, R., Bai, J., Zhong, J., et al. (2025). The immune microenvironment in endometrial carcinoma: mechanisms and therapeutic targeting. Frontiers in Immunology, 16, 1586315. https://doi.org/10.3389/fimmu.2025.1586315
Xu, J., Escamilla, J., Mok, S., David, J., Priceman, S., West, B., et al. (2013). CSF1R Signaling Blockade Stanches Tumor-Infiltrating Myeloid Cells and Improves the Efficacy of Radiotherapy in Prostate Cancer. Cancer Research, 73(9), 2782-2794. https://doi.org/10.1158/0008-5472.CAN-12-3981
Yokoi, E., Mabuchi, S., Komura, N., Shimura, K., Kuroda, H., Kozasa, K., et al. (2019). The role of myeloid-derived suppressor cells in endometrial cancer displaying systemic inflammatory response: clinical and preclinical investigations. OncoImmunology, 8(12), e1662708. https://doi.org/10.1080/2162402X.2019.1662708
Zhang, C., Wang, M., & Wu, Y. (2023). Features of the immunosuppressive tumor microenvironment in endometrial cancer based on molecular subtype. Frontiers in Oncology, 13, 1278863. https://doi.org/10.3389/fonc.2023.1278863
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Grecia Camila Pérez Cárdenas, Fabiola Solórzano Ibarra, Martha Cecilia Téllez Bañuelos, Brenda Guadalupe Ortiz Tamayo, Pablo Cesar Ortiz Lazareno

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.



