Role of Myeloid-Derived Suppressor Cells and Arginase-1 in Endometrial Cancer

Role of Myeloid-Derived Suppressor Cells and Arginase-1 in Endometrial Cancer

Authors

  • Grecia Camila Pérez Cárdenas Universidad de Guadalajara. Centro Universitario de Ciencias de la Salud.
  • Fabiola Solórzano Ibarra Universidad de Guadalajara. Centro Universitario de Ciencias de la Salud.
  • Martha Cecilia Téllez Bañuelos Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Brenda Guadalupe Ortiz Tamayo Universidad de Guadalajara. Centro Universitario de Ciencias de la Salud.
  • Pablo Cesar Ortiz Lazareno Instituto Mexicano del Seguro Social. Centro de Investigación Biomédica de Occidente.

Keywords:

Cynecological cancer, inmmune system, immature immune cells, cancer development

Abstract

Endometrial cancer is the fourth most common gynecological cancer worldwide. In Mexico, it is the fifth most frequent cancer among women and affects the lining of the uterus. Risk factors include age, metabolic disorders, and family history. In recent years, the percentage of myeloid-derived suppressor cells (MDSCs) and serum arginase-1 concentrations have been associated with a poorer prognosis in cancer patients. MDSCs are immature immune cells produced by altered myelopoiesis. They display immature phenotypic and morphological characteristics, as well as anti-inflammatory and immunosuppressive functions that can promote tumor growth compared to their mature counterparts MDSCs produce diverse molecules, including Arginase-1, an enzyme that plays a role in the urea cycle and other cellular processes. In cancer, arginase-1 can suppress the function of T cells and natural killer (NK) cells, which also contributes to immune evasion by the tumor. In addition, it helps promote the activity of MDSCs. This article describes relevant aspects of myeloid-derived suppressor cells and Arginase-1, as well as their role in the development of endometrial cancer.

References

Bahena-González, A., Isla-Ortiz, D., Trejo-Durán, E., Arango-Bravo, E., Cano-Blanco, C., Morales-Vásquez, F., et al. (2023). Oncoguía de cáncer de endometrio 2023. LAJCSMT, 5(1), 194-205. https://doi.org/10.34141/LJCS5711966

Baessler, A., & Vignali, D. A. A. (2024). T Cell Exhaustion. Annual Review of Immunology, 42(1), 179-206. https://doi.org/10.1146/annurev-immunol-090222-110914

Bergerud, K. M. B., Berkseth, M., Pardoll, D. M., Ganguly, S., Kleinberg, L. R., Lawrence, J., et al. (2024). Radiation Therapy and Myeloid-Derived Suppressor Cells: Breaking Down Their Cancerous Partnership. International Journal of Radiation Oncology*Biology*Physics, 119(1), 42-55. https://doi.org/10.1016/j.ijrobp.2023.11.050

Bianco, B., Barbosa, C. P., Trevisan, C. M., Laganà, A. S., & Montagna, E. (2020). Endometrial cancer: a genetic point of view. Translational Cancer Research, 9(12), 7706-7715. https://doi.org/10.21037/tcr-20-2334

Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 5(8), 641-654. https://doi.org/10.1038/nri1668

Castillo Vidrio, G. M. (2023). Supervivencia libre de enfermedad en pacientes con diagnóstico de cáncer de endometrio etapas clínicas I y II e histología serosa tratadas con quimioterapia y radioterapia adyuvante en el Hospital en Oncología de Centro Médico Siglo XXI durante el periodo de 2015 a 2020 [Tesis de especialidad, Universidad Nacional Autónoma de México]. Repositorio DGB-UNAM. https://ru.dgb.unam.mx/server/api/core/bitstreams/b529ebde-e283-4e40-92e0-79e31581aaa5/content

Chelmow, D., Brooks, R., Cavens, A., Huber-Keener, K., Scott, D. M., Sheth, S. S., et al. (2022). Executive Summary of the Uterine Cancer Evidence Review Conference. Obstetrics & Gynecology, 139(4), 626-643. https://doi.org/10.1097/AOG.0000000000004711

Chiba, Y., Mizoguchi, I., Hasegawa, H., Ohashi, M., Orii, N., Nagai, T., et al. (2018). Regulation of myelopoiesis by proinflammatory cytokines in infectious diseases. Cellular and Molecular Life Sciences, 75(8), 1363-1376. https://doi.org/10.1007/s00018-017-2724-5

Dakal, T. C., George, N., Xu, C., Suravajhala, P., & Kumar, A. (2024). Predictive and Prognostic Relevance of Tumor-Infiltrating Immune Cells: Tailoring Personalized Treatments against Different Cancer Types. Cancers, 16(9), 1626. https://doi.org/10.3390/cancers16091626

De Visser, K. E., & Joyce, J. A. (2023). The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 41(3), 374-403. https://doi.org/10.1016/j.ccell.2023.02.016

Degos, C., Heinemann, M., Barrou, J., Boucherit, N., Lambaudie, E., Savina, A., et al. (2019). Endometrial Tumor Microenvironment Alters Human NK Cell Recruitment, and Resident NK Cell Phenotype and Function. Frontiers in Immunology, 10, 877. https://doi.org/10.3389/fimmu.2019.00877

Derbyshire, A. E., Allen, J. L., Gittins, M., Lakhiani, B., Bolton, J., Shaw, J., et al. (2021). PROgesterone Therapy for Endometrial Cancer Prevention in Obese Women (PROTEC) Trial: A Feasibility Study. Cancer Prevention Research, 14(2), 263-274. https://doi.org/10.1158/1940-6207.CAPR-20-0248

Dey, D. K., Krause, D., Rai, R., Choudhary, S., Dockery, L. E., & Chandra, V. (2023). The role and participation of immune cells in the endometrial tumor microenvironment. Pharmacology & Therapeutics, 251, 108526. https://doi.org/10.1016/j.pharmthera.2023.108526

Dyduch, G., Miążek, A., Laskowicz, Ł., & Szpor, J. (2023). Distribution of DC Subtypes: CD83+, DC-LAMP+, CD1a+, CD1c+, CD123+, and DC-SIGN+ in the Tumor Microenvironment of Endometrial Cancers—Correlation with Clinicopathologic Features. International Journal of Molecular Sciences, 24(3), 1933. https://doi.org/10.3390/ijms24031933

Fakhri, S., Moradi, S. Z., Abbaszadeh, F., Faraji, F., Amirian, R., Sinha, D., et al. (2024). Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals. Cancer Metastasis Reviews, 43(1), 261-292. https://doi.org/10.1007/s10555-023-10161-8

Gong, H., Zhao, J., Xu, W., Wan, Y., Mu, X., & Zhang, M. (2023). The distribution of myeloid-derived suppressor cells subsets and up-regulation of programmed death-1/PD-L1 axis in peripheral blood of adult CAP patients. PLoS ONE, 18(9), e0291455. https://doi.org/10.1371/journal.pone.0291455

Grzywa, T. M., Sosnowska, A., Matryba, P., Rydzynska, Z., Jasinski, M., Nowis, D., et al. (2020). Myeloid Cell-Derived Arginase in Cancer Immune Response. Frontiers in Immunology, 11, 938. https://doi.org/10.3389/fimmu.2020.00938

Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12(1), 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059

Harajka, A., Hercsik, T., Das Virgens, I. P. A., Máthé, I., Tornyossy, Z., AlFarwi, A., et al. (2025). Association of oral contraceptives and risk of endometrial cancer: A systematic review and meta-analysis. Acta Obstetricia et Gynecologica Scandinavica, 104(4), 591-603. https://doi.org/10.1111/aogs.15043

Hiam-Galvez, K. J., Allen, B. M., & Spitzer, M. H. (2021). Systemic immunity in cancer. Nature Reviews Cancer, 21(6), 345-359. https://doi.org/10.1038/s41568-021-00347-z

Jewell, E. L., Huang, J. J., Abu-Rustum, N. R., Gardner, G. J., Brown, C. L., Sonoda, Y., et al. (2014). Detection of sentinel lymph nodes in minimally invasive surgery using indocyanine green and near-infrared fluorescence imaging for uterine and cervical malignancies. Gynecologic Oncology, 133(2), 274-277. https://doi.org/10.1016/j.ygyno.2014.02.028

Jou, E., Chaudhury, N., & Nasim, F. (2024). Novel therapeutic strategies targeting myeloid-derived suppressor cell immunosuppressive mechanisms for cancer treatment. Exploration of Targeted Anti-tumor Therapy, 5(1), 187-207. https://doi.org/10.37349/etat.2024.00212

Lasser, S. A., Ozbay Kurt, F. G., Arkhypov, I., Utikal, J., & Umansky, V. (2024). Myeloid-derived suppressor cells in cancer and cancer therapy. Nature Reviews Clinical Oncology, 21(2), 147-164. https://doi.org/10.1038/s41571-023-00846-y

Law, A. M. K., Valdes-Mora, F., & Gallego-Ortega, D. (2020). Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells, 9(3), 561. https://doi.org/10.3390/cells9030561

Li, K., Shi, H., Zhang, B., Ou, X., Ma, Q., Chen, Y., et al. (2021). Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduction and Targeted Therapy, 6(1), 362. https://doi.org/10.1038/s41392-021-00670-9

Liu, X., Sun, H., Liang, J., Yu, H., Xue, M., Li, Y., et al. (2025). Metabolic interplay between endometrial cancer and tumor-associated macrophages: lactate-induced M2 polarization enhances tumor progression. Journal of Translational Medicine, 23(1), 923. https://doi.org/10.1186/s12967-025-06235-6

Ma, T., Renz, B. W., Ilmer, M., Koch, D., Yang, Y., Werner, J., et al. (2022). Myeloid-Derived Suppressor Cells in Solid Tumors. Cells, 11(2), 310. https://doi.org/10.3390/cells11020310

Mabuchi, S., & Sasano, T. (2021). Myeloid-Derived Suppressor Cells as Therapeutic Targets in Uterine Cervical and Endometrial Cancers. Cells, 10(5), 1073. https://doi.org/10.3390/cells10051073

Mazzoni, A., Bronte, V., Visintin, A., Spitzer, J. H., Apolloni, E., Serafini, P., et al. (2002). Myeloid Suppressor Lines Inhibit T Cell Responses by an NO-Dependent Mechanism. The Journal of Immunology, 168(2), 689-695. https://doi.org/10.4049/jimmunol.168.2.689

Molaro, M. C., Battisegola, C., Schiano, M. E., Failla, M., Rimoli, M. G., Lazzarato, L., et al. (2025). Synthesis of Arginase Inhibitors: An Overview. Pharmaceutics, 17(1), 117. https://doi.org/10.3390/pharmaceutics17010117

Niu, F., Yu, Y., Li, Z., Ren, Y., Li, Z., Ye, Q., et al. (2022). Arginase: An emerging and promising therapeutic target for cancer treatment. Biomedicine & Pharmacotherapy, 149, 112840. https://doi.org/10.1016/j.biopha.2022.112840

Noman, M. Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., et al. (2014). PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. Journal of Experimental Medicine, 211(5), 781-790. https://doi.org/10.1084/jem.20131916

Raber, P., Ochoa, A. C., & Rodríguez, P. C. (2012). Metabolism of L-Arginine by Myeloid-Derived Suppressor Cells in Cancer: Mechanisms of T cell suppression and Therapeutic Perspectives. Immunological Investigations, 41(6-7), 614-634. https://doi.org/10.3109/08820139.2012.680634

Rios-Doria, E., Abu-Rustum, N. R., Alektiar, K. M., Makker, V., Liu, Y. L., Zamarin, D., et al. (2024). Prognosis of isolated tumor cells and use of molecular classification in early stage endometrioid endometrial cancer. International Journal of Gynecological Cancer, 34(9), 1373-1381. https://doi.org/10.1136/ijgc-2024-005522

Roerden, M., & Spranger, S. (2025). Cancer immune evasion, immunoediting and intratumour heterogeneity. Nature Reviews Immunology, 25(5), 353-369. https://doi.org/10.1038/s41577-024-01111-8

S. Clemente, G., Van Waarde, A., F. Antunes, I., Dömling, A., & H. Elsinga, P. (2020). Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. International Journal of Molecular Sciences, 21(15), 5291. https://doi.org/10.3390/ijms21155291

Safarzadeh, E., Asadzadeh, Z., Safaei, S., Hatefi, A., Derakhshani, A., Giovannelli, F., et al. (2020). MicroRNAs and lncRNAs—A New Layer of Myeloid-Derived Suppressor Cells Regulation. Frontiers in Immunology, 11, 572323. https://doi.org/10.3389/fimmu.2020.572323

Shi, W., Wu, W., Wang, J., & Meng, X. (2024). Single-cell transcriptomics reveals comprehensive microenvironment and highlights the dysfunctional state of NK cells in endometrioid carcinoma. Medicine, 103(13), e37555. https://doi.org/10.1097/MD.0000000000037555

Sun, Y., Jiang, G., Wu, Q., Ye, L., & Li, B. (2023). The role of tumor-associated macrophages in the progression, prognosis and treatment of endometrial cancer. Frontiers in Oncology, 13, 1213347. https://doi.org/10.3389/fonc.2023.1213347

Suszczyk, D., Skiba, W., Jakubowicz-Gil, J., Kotarski, J., & Wertel, I. (2021). The Role of Myeloid-Derived Suppressor Cells (MDSCs) in the Development and/or Progression of Endometriosis-State of the Art. Cells, 10(3), 677. https://doi.org/10.3390/cells10030677

Vanderstraeten, A., Luyten, C., Verbist, G., Tuyaerts, S., & Amant, F. (2014). Mapping the immunosuppressive environment in uterine tumors: implications for immunotherapy. Cancer Immunology, Immunotherapy, 63(6), 545-557. https://doi.org/10.1007/s00262-014-1537-8

Vonwirth, V., Bülbül, Y., Werner, A., Echchannaoui, H., Windschmitt, J., Habermeier, A., et al. (2021). Inhibition of Arginase 1 Liberates Potent T Cell Immunostimulatory Activity of Human Neutrophil Granulocytes. Frontiers in Immunology, 11, 617699. https://doi.org/10.3389/fimmu.2020.617699

Wang, X., Xiang, H., Toyoshima, Y., Shen, W., Shichi, S., Nakamoto, H., et al. (2023). Arginase-1 inhibition reduces migration ability and metastatic colonization of colon cancer cells. Cancer & Metabolism, 11(1), 1. https://doi.org/10.1186/s40170-022-00301-z

Wang, Y., Liu, N., Guo, X., Han, R., Bai, J., Zhong, J., et al. (2025). The immune microenvironment in endometrial carcinoma: mechanisms and therapeutic targeting. Frontiers in Immunology, 16, 1586315. https://doi.org/10.3389/fimmu.2025.1586315

Xu, J., Escamilla, J., Mok, S., David, J., Priceman, S., West, B., et al. (2013). CSF1R Signaling Blockade Stanches Tumor-Infiltrating Myeloid Cells and Improves the Efficacy of Radiotherapy in Prostate Cancer. Cancer Research, 73(9), 2782-2794. https://doi.org/10.1158/0008-5472.CAN-12-3981

Yokoi, E., Mabuchi, S., Komura, N., Shimura, K., Kuroda, H., Kozasa, K., et al. (2019). The role of myeloid-derived suppressor cells in endometrial cancer displaying systemic inflammatory response: clinical and preclinical investigations. OncoImmunology, 8(12), e1662708. https://doi.org/10.1080/2162402X.2019.1662708

Zhang, C., Wang, M., & Wu, Y. (2023). Features of the immunosuppressive tumor microenvironment in endometrial cancer based on molecular subtype. Frontiers in Oncology, 13, 1278863. https://doi.org/10.3389/fonc.2023.1278863

Published

2026-01-01

How to Cite

Pérez Cárdenas, G. C., Solórzano Ibarra, F., Téllez Bañuelos, M. C., Ortiz Tamayo, B. G., & Ortiz Lazareno, P. C. (2026). Role of Myeloid-Derived Suppressor Cells and Arginase-1 in Endometrial Cancer: Role of Myeloid-Derived Suppressor Cells and Arginase-1 in Endometrial Cancer. E-CUCBA, (27), 40–48. Retrieved from http://e-cucba.cucba.udg.mx/index.php/e-Cucba/article/view/416

Most read articles by the same author(s)