Microbiota bacteriana cultivable del erizo de mar Hesperocidaris asteriscus, habitante de la zona mesofótica superior del cañón submarino de los Arcos, Puerto Vallarta

Cultivable bacterial microbiota of the sea urchin Hesperocidaris asteriscus, inhabitant of the upper mesophotic zone in the Los Arcos submarine cayon, Puerto Vallarta

Authors

  • Paola Berenice Hernández-Vázquez Universidad de Guadalajara
  • Héctor Ocampo-Alvarez Universidad de Guadalajara
  • Cristian Moisés Galván-Villa Universidad de Guadalajara
  • Eduardo Ríos-Jara Universidad de Guadalajara
  • Amayaly Becerril-Espinosa Universidad de Guadalajara

DOI:

https://doi.org/10.32870/ecucba.vi20.306

Keywords:

Biodiversidad, simbiosis, bacterias marinas, Echinoidea

Abstract

Los organismos marinos, como los erizos de mar, albergan bacterias simbiontes que producen metabolitos con actividad antibiótica. Estos metabolitos pueden conferir al hospedero un mecanismo de defensa contra patógenos, contribuyendo a su aptitud ecológica y pueden también ser utilizados con fines biotecnológicos.
Considerando lo anterior, el objetivo de este trabajo fue aislar la microbiota cultivable del erizo de mar Hesperocidaris asteriscus y analizarla en busca de cepas con actividad antibiótica. Las bacterias se aislaron en cuatro medios de aislamiento y la actividad antibiótica se evaluó por inhibición del crecimiento en tres patógenos: S. aureus, E. coli y P. aeruginosa. Como resultado se recuperaron 29 cepas con morfología colonial diferente y de estas nueve presentaron bioactividad contra al menos un patógeno. Cuatro de estas cepas bioactivas presentaron atributos morfológicos propios del phylum Actinobacteria. Se concluye que las bacterias bioactivas podrían contribuir en la defensa del erizo, al ser capaces de inhibir el crecimiento de patógenos. Sin embargo, es importante continuar esta línea de investigación hacia la búsqueda y caracterización de estos metabolitos, ya que podrían ser usados para el tratamiento de bacterias patógenas resistentes a los fármacos conocidos actualmente.

References

Abdelmohsen, U.R., Bayer, K., y Hentschel, U. (2014). Diversity, abundance and natural products of marine sponge-associated actinomycetes. Natural Product Reports, 31, 381-399. https://doi.org/10.1039/C3NP70111E

Archana, A., y Babu, K.R. (2016). Nutrient composition and antioxidant activity of gonads of sea urchin Stomopneustes variolaris. Food chemistry, 197, 597-602. https://doi.org/ 10.1016/j.foodchem.2015.11.003

Atencio, L.A., Dal Grande, F., Young, G.O., Gavilán, R., Guzmán, H.M., Schmitt, I., Mejía, L.C. y Gutiérrez, M. (2018). Antimicrobial‐producing Pseudoalteromonas from the marine environment of Panama shows a high phylogenetic diversity and clonal structure. Journal of Basic Microbiology, 58, 747-769.https://doi.org/10.1002/jobm.201800087

Becerril-Espinosa, A., Freel, K.C., Jensen, P.R., y Soria-Mercado, I.E. (2013). Marine Actinobacteria from the gulf of California: diversity, abundance and secondary metabolite biosynthetic potential. Antonie Van Leeuwenhoek, 103, 809-819. https://doi.org/ 10.1007/s10482-012-9863-3

Cardoso-Martínez, F., Becerril-Espinosa, A., Barrila-Ortíz, C., Torres-Beltrán, M., Ocampo-Alvarez, H., Iñiguez-Martínez, A.M., y Soria-Mercado, I.E. (2015). Antibacterial and cytotoxic bioactivity of marine actinobacteria from Loreto Bay national park, México. Hidrobiológica, 25, 223–229.

Carrier, T.J., Leigh, B.A., Deaker, D.J., Devens, H.R., Wray, G.A., Bordenstein, S.R., Byrne, M., y Reitzel, A.M. (2021). Microbiome reduction and endosymbiont gain from a switch in sea urchin life history. Proceedings of the National Academy of Sciences, 118, e2022023118. https://doi.org/10.1073/pnas.2022023118

Caso, M. E. (1978). Los Equinodermos del Pacífico de México. Parte Primera-Órdenes Cidaroidea y Aulodonta. Parte segunda-Órdenes Stiridonta y Camarodonta. Centro de Ciencias del Mar y Limnología. Universidad Nacional Autónoma de México, Publicaciones especiales 1: 1-244.

Chen, Y.G., Zhang, Y.Q., He, J.W., Klenk, H.P., Xiao, J.Q., Zhu, H. Y., Tang S.K., y Li, W.J. (2011). Bacillus hemicentroti sp. nov., a moderate halophile isolated from a sea urchin. International Journal of Systematic and Evolutionary Microbiology, 61, 2950-2955.https://doi.org/10.1099/ijs.0.026732-0

Clark, H. L. (1948). A report of the echini of the warmer eastern Pacific, based on the collection of the Velero III. Allan Hancock Pacific Expeditions. 8(ii-xii): 225-352.

DOF 1975, Diario Oficial de la Federación, México, D. F., a 16 de julio de 1975.- ACUERDO que establece como zona de refugio para la protección de la flora y fauna marinas, las aguas comprendidas en "Los Arcos", Jalisco. El Secretaria de Industria y Comercio, José Campillo, Sáinz. -Rúbrica. Recuperado de https://www.dof.gob.mx/nota_detalle.php? codigo=4785822&fecha=28/07/1975#gsc.tab=0

Fofied, S.K.S., Sabdono, A., y Wijayanti, D.P. (2018). Potential bacterial symbiont of sea urchin as a multi-drug resistant (MDR) antibacterial agent against Staphylococcus aureus and Escherichia coli bacteria. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 23, 131-136. https://doi.org/ 10.14710/ik.ijms. 23.3.131-136

Franco, P.O., Santafé-Patiño, G., y Angulo-Ortiz, A. (2015). Actividad antibacteriana y antifúngica de la estrella de mar Oreaster reticulatus (Valvatida: Oreasteridae) y de los erizos de mar Mellita quinquiesperforata (Clypeasteroida: Mellitidae) y Diadema antillarum (Diadematoida: Diadematidae) del Caribe Colombiano. Revista de Biología Tropical, 63, 329-337. https://doi.org/10.15517/rbt.v63i2.23167

Gontang, E.A., Fenical, W., y Jensen, P.R. (2007). Phylogenetic diversity of Gram-positive bacteria cultured from marine sediments. Applied and Environmental Microbiology, 73, 3272-3282.https://doi.org/10.1128/AEM.02811-06

Guo, Z.K., Wang, R., Chen, S.Q., Chen, F.X., Liu, T.M., y Yang, M.Q. (2018a). Anthocidins A–D, New 5-Hydroxyanthranilic Acid Related Metabolites from the Sea Urchin-Associated Actinobacterium, Streptomyces sp. HDa1. Molecules, 23,5, 1032. https://doi.org/10.3390/molecules23051032

Guo, Z.K., Wang, R., Chen, F.X., Liu, T.M., y Yang, M.Q. (2018b). Bioactive aromatic metabolites from the sea urchin-derived actinomycete Streptomyces spectabilis strain HDa1. Phytochemistry Letters, 25, 132-135. https://doi.org/10.1016/j.phytol.2018.04.014

Hakim, J.A., Koo. H., Kumar, R., Lefkowitz, E.J., Morrow, C.D., Powell, M.L., Watts, SA., Bej. A.K., (2016). The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles, FEMS Microbiology Ecology, 92, fiw146. https://doi.org/10.1093/femsec/fiw146

Hakim, J.A., Schram, J.B., Galloway, A.W., Morrow, C.D., Crowley, M.R., Watts, S.A., y Bej, A.K. (2019). The purple sea urchin Strongylocentrotus purpuratus demonstrates a compartmentalization of gut bacterial microbiota, predictive functional attributes, and taxonomic co-occurrence. Microorganisms, 7, 35. https://doi.org/ 10.3390/microorganisms 7020035

Haug, T., Kjuul, A.K., Styrvold, O.B., Sandsdalen, E., Olsen, Ø.M., y Stensvåg, K. (2002). Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). Journal of Invertebrate Pathology, 81, 94-102. https://doi.org/ 10.1016/S0022-2011(02)00153-2

Íñiguez-Martínez, A.M., Cardoso-Martínez, F., De la Rosa, J., Cueto, M., Díaz-Marrero, A., Darias, J., Becerril-Espinosa, A., Plata-Rosas, L.J., y Soria-Mercado, I.E. (2016). Compuestos aislados de Salinispora arenicola del Golfo de California, México. Revista de biología marina y oceanografía, 51, 161-170. https://doi.org/10.4067/S0718-19572016000100015

Jiao, H., Shang, X., Dong, Q., Wang, S., Liu, X., Zheng, H., y Lu, X. (2015). Polysaccharide constituents of three types of sea urchin shells and their anti-inflammatory activities. Marine Drugs, 13, 5882-5900. https://doi.org/ 10.3390/md13095882

Laport, M.S., Bauwens, M., Collard, M., y George, I. (2018). Phylogeny and antagonistic activities of culturable bacteriaassociated with the gut microbiota of the sea urchin(Paracentrotus lividus). Current Microbiology, 75, 359–367. https://doi.org/10.1007/s00284-017-1389-5

Lawrence, J.M., Lawrence, A.L., y Watts, S.A. (2013). Feeding, digestion and digestibility of sea urchins, p. 135–154.In Developments in aquaculture and fisheries science, v. 38. Elsevier. https://doi.org/10.1016/B978-0-12-396491-5.00009-5

Liu, C., Ye, L., Lin, Q., Xi, T., Xing, Y., y Gao, Y. (2006). Studies on preparation and anti-tumor activity of the polysaccharide from the eggs of Strongylocentrotus Nudus (SEP). Pharmaceutical Biotechnology - Beijing-, 13, 429.

Liu, T., Wu, S., Zhang, R., Wang, D., Chen, J., y Zhao, J. (2019). Diversity and antimicrobial potential of Actinobacteria isolated from diverse marine sponges along the Beibu Gulf of the South China Sea. FEMS Microbiology Ecology, 95, fiz089. https://doi.org/ 10.1093/femsec/fiz089

Lombó, F., Velasco, A., Castro, A., De la Calle, F., Braña, A.F., Sánchez‐Puelles, J.M., Méndez, C. y Salas, J.A. (2006). Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two Streptomyces species. ChemBioChem, 7, 366-376. https://doi.org/10.1002/cbic.200500325

MacFaddin, J.F. (2003). Pruebas bioquímicas para la identificación de bacterias de importancia clínica. Ed. Médica Panamericana.

Medina, D.A., Suárez, R., y Godoy, M. (2019). Microbial diversity of the red sea urchin Loxechinus albus during controlled farming in Puerto Montt, Chile, using 16S rRNA gene amplicon sequencing. Microbiol Resour Announc. 8, e00851-19. https://doi.org/ 10.1128/ MRA.00851-19

Mehbub, M.F., Lei, J., Franco, C., y Zhang, W. (2014). Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Marine Drugs, 12, 4539-4577. https://doi.org/10.3390/md12084539

Mincer, T., Jensen, P.R., Kauffman, C.A., y Fenical, W. (2002). Widespread and persistent populations of a major new marine Actinomycete taxon in ocean sediments. Applied and Environmental Microbiology, 68, 5005–5011. https://doi.org/ 10.1128/AEM.68.10.5005-5011.20

Moore, B.S., Trischman, J.A., Seng, D., Kho, D., Jensen, P.R., y Fenical, W. (1999). Salinamides, antiinflammatory depsipeptides from a marine Streptomycete. The Journal of Organic Chemistry, 64, 1145-1150. https://doi.org/10.1021/jo9814391

Moree, W.J., McConnell, O.J., Nguyen, D.D., Sanchez, L.M., Yang, Y.-L., Zhao, X., Liu, W.-T., Boudreau, P.D. Srinivasan J., Atencio L. Ballesteros, J., Gavilán, R.G., Torres-Mendoza, D., Guzmán H.M., Gerwick, W.H., Gutiérrez, M., Dorrestein, P.C., et al. (2014). Microbiota of healthy corals are active against fungi in a light-dependent manner. ACS Chemical Biology, 9, 2300-2308. https://doi.org/ 10.1021/cb500432j

Mortensen, T. (1951). A Monograph of the Echinoidea. V, 2. Spatangoida II. Amphisternata II. Spatangidæ, Loveniidæ, Pericosmidæ, Schizasteridæ, Brissidæ, 593 pp., C. A. Reitzel, Copenhagen.

Nadiarti, N., La Nafie, Y.A., Priosambodo, D., Umar, M.T., Rahim, S.W., Inaku, D.F., Musfirah, N.H., Paberu, D.A., y Moore, A.M. (2021). Restored seagrass beds support Macroalgae and Sea Urchin communities. In IOP Conference Series: Earth and Environmental Science, 860, 1, 012014. https://doi.org/10.1088/1755-1315/860/1/012014

Nedashkovskaya, O.I., Kim, S.B., Kwak, J., Mikhailov, V.V., y Bae, K.S. (2006). Mariniflexile gromovii gen. nov., sp. nov., a gliding bacterium isolated from the sea urchin Strongylocentrotus intermedius. International Journal of Systematic and Evolutionary Microbiology, 56, 1635-1638. https://doi.org/10.1099/ijs.0.64293-0

Nedashkovskaya, O.I., Stenkova, A.M., Zhukova, N.V. Van Trappen, S., Lee, J.S., y Kim, S.B. (2013). Echinimonas agarilytica gen. nov., sp. nov., a new gamma proteobacterium isolated from the sea urchin Strongylocentrotus intermedius. Antonie van Leeuwenhoek, 103, 69–77. https://doi.org/10.1007/s10482-012-9787-y

Nedashkovskaya, O.I., Van Trappen, S., Frolova, G.M., y De Vos, P. (2012). Bacillus berkeleyi sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Archives of Microbiology, 194, 215-221. https://doi.org/10.1007/s00203-011-0771-0

Nozawa, Y., Lin, C. H., y Meng, P. J. (2020). Sea urchins (diadematids) promote coral recovery via recruitment on Taiwanese reefs. Coral Reefs, 39, 1199-1207. https://doi.org/10.1007/s00338-020-01955-1

Powers, E.M. (1995). Efficacy of the Ryu non-staining KOH technique for rapidly determining gram reactions of foodborne and waterborne bacteria and yeasts. Applied Environmental Microbiology. 61, 3756–3758. https://doi.org/10.1128/aem.61.10.3756-3758.1995

Sadek, S.A., Hassanein, S.S., Mohamed, A.S., Soliman, A.M., y Fahmy, S.R. (2022). Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats. Journal of Food Biochemistry, 46, e13729. https://doi.org/10.1111/jfbc.13729

Sidiqi, F.M., Pringgenies, D., y Setyati, W.A. (2019). Antibacterial activity of gonad methanol extract of the sea urchin Diadema setosum against methicillin-resistant Staphylococcus aureus and Escherichia coli. In IOP Conference Series: Earth and Environmental Science, 246, p. 012040. https://doi.org/10.1088/1755-1315/246/1/012040

Spyksma, A.J., Miller, K.I., y Shears, N.T. (2022). Diver-generated photomosaics as a tool for monitoring temperate rocky reef ecosystems. Frontiers in Marine Science, 9, 1314. https://doi.org/ 10.3389/fmars.2022.953191

Stevenson, A., y Kroh, A. (2020). Deep-sea sea urchins. In Developments in aquaculture and fisheries science, 43, 237-254. Elsevier. https://doi.org/10.1016/B978-0-12-819570-3.00014-7

Williams, J.P., Claisse, J.T., Pondella II, D.J., Williams, C.M., Robart, M.J., Scholz, Z., Jaco, E.M., Ford, T., Burdick, H., y Witting, D. (2021). Sea urchin mass mortality rapidly restores kelp forest communities. Marine Ecology Progress Series, 664, 117-131.https://doi.org/10.3354/meps13680

Yonezawa, K., Yamada, K., y Kouno, I. (2011). New Diketopiperazine Derivatives Isolated from Sea Urchin-Derived Bacillus sp. Chemical and Pharmaceutical Bulletin. 59, 106-108 Doi: 10.1248/cpb.59.106

Published

2023-06-30

How to Cite

Hernández-Vázquez, P. B., Ocampo-Alvarez, H., Galván-Villa, C. M., Ríos-Jara, E., & Becerril-Espinosa, A. (2023). Microbiota bacteriana cultivable del erizo de mar Hesperocidaris asteriscus, habitante de la zona mesofótica superior del cañón submarino de los Arcos, Puerto Vallarta: Cultivable bacterial microbiota of the sea urchin Hesperocidaris asteriscus, inhabitant of the upper mesophotic zone in the Los Arcos submarine cayon, Puerto Vallarta. E-CUCBA, (20), 141–150. https://doi.org/10.32870/ecucba.vi20.306

Most read articles by the same author(s)