Effects of climate change on the distribution of Pinus chihuahuana and Pinus leiophylla: a proposal for the conservation of both species in Mexico
Effects of climate change on the distribution of Pinus chihuahuana and Pinus leiophylla: a proposal for the conservation of both species in Mexico
DOI:
https://doi.org/10.32870/e-cucba.vi21.322Keywords:
Areas of suitability, climate scenarios, distribution models, environmental analysis, potential distributionAbstract
The use of distribution models is a tool used to solve biological and environmental problems. Geographic data and environmental variables were analyzed to test the hypothesis that the distribution of Pinus chihuahuana and Pinus leiophylla will be maintained by 2050 and 2080 in Mexico. Records of both species and environmental variables for the period 1910-2009 and Global Circulation Models (GFDL-CM3 and CNRM-CM5) were used under two RCP 4.5 and 8.5 scenarios projected to 2050 and 2080. The MaxEnt algorithm was used. The results were evaluated and validated using AUC, partial Roc and Z-statistic tests. The contribution of each variable in the models was determined using the Jackknife test. The models estimated a current potential distribution area for P. chihuahuana of 81,614.8 km² and 15,105.3 km² for P. leiophylla. The relevant variables in the current period for P. chihuahuana were Bio1, Bio6, Bio13 and Bio19, while in P. leiophylla they were Bio1, Veget and Edaf. However, for the future period they were Bio1, Bio19 and Bio13 for P. chihuahuana, and Bio1, Bio14 and Bio4 for P. leiophylla. The CNRM-CM5 and GFDL-CM3 GCM projections estimated a reduction in the ranges of both species from 2080 onwards. Conservation areas of 79,078.12 km² for P. chihuahuana and 10,517.8 km² for P. leiophylla were estimated at the end of the century. Areas suitable for the conservation of P. chihuahuana (Chihuahua and Durango) and P. leiophylla (Michoacán) in Mexico were identified and proposed.
References
Coitiño, H., Montenegro, F., Fallabrino, A., González, E. y Hernández, D. (2013). Distribución actual y potencial de Cabassous tatouay y Tamandua tetradactyla en el límite sur de su distribución: implicancias para su conservación en Uruguay. Edentata, 14(1), 23-34. DOI:10.553/020.014.0104
Cruz-Cárdenas, G., López-Mata, L., Silva, J., Bernal-Santana, N., Estrada-Godoy, F. y López-Sandoval, J. (2016). Potential distribution model of Pinaceae species under climate change scenarios in Michoacán. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(2), 135-148. DOI: 10.5154/r.rchscfa.2015.06.027
Cuervo Robayo, A., Téllez Valdés, O., Gómez Albores, M., Venegas Barrera, C., Manjarrez, J. y Martínez Meyer, E. (2014). An update of high‐resolution monthly climate surfaces for Mexico. International journal of climatology, 34(7), 2427-2437. DOI: 10.1002/joc.3848
Davis, M. y Shaw, R. (2001). Range shifts and adaptive response to Quaternary climate change. Science, 292, 673-679. DOI: 10.1126 / science.292.5517.673
Environmental Scientific Research Institute. (2016). ArcGIS 10.5. Software diseñado para análisis espacial y Sistemas de Información Geográfica. Redlands, California, USA.
Farjon, A. y Styles, B. (1997). Pinus (Pinaceae). Flora Neotropica Monograph 75. New York Botanical Garden, New York.
Fernández, A., Zavala, J., Romero, R., Conde, A. y Trejo, I. (2015). Actualización de los escenarios de cambio climático para estudios impactos, vulnerabilidad y adaptación en México y Centroamérica. Mexico D.F.: Centro de Ciencias de la Atmósfera, UNAM. DOI: 10.7818/ecos.2016.25-1.20
Global Biodiversity Information Facilit. (2020). Bases de datos geográficos disponibles para Pinus chihuahuana Engelm. y Pinus leiophylla Schltdl. & Cham en México. Recuperado de http://www.gbif.org
Ibarra, M. y Huerta, M. (2016). Cambio climático y predicción de incendios al 2050 en el Bosque La Primavera, Jalisco. Revista Mexicana de Ciencias Forestales, 7(37), 39-50. DOI: 10.29298/rmcf.v7i37.50
Instituto Nacional de Estadística, Geografía e Informática. (2001). Provincias fisiográficas. Conjunto de datos vectoriales Fisiográficos. Continuo Nacional. Escala 1:1,000,000. Serie I. Recuperado de https://www.inegi.org.mx/temas/fisiografia/default.html#Descargas.
Instituto Nacional de Estadística, Geografía e Informática. (2016). Modelo Digital de Elevación. Aguascalientes. México. Recuperado de http://www.beta.inegi.org.mx/app/geo2/elevacionesmex/index.jsp
Panel Intergubernamental sobre Cambio Climático. (2014). Contribución de los Grupos de trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo principal de redacción, R.K. Pachauri y L.A. Meyer (Eds.)]. IPCC, Ginebra, Suiza. Recuperado de https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf
Panel Intergubernamental sobre Cambio Climático. (2018). Global Warming of 1.5°C. Recuperado de http://www.ipcc.ch/report/sr15/
Manzanilla-Quijada, G., Treviño-Garza, E., Vargas-Larreta, E., López-Martínez, J. y Mata-Balderas, J. (2020). Ideal areas with potential for the production of Pinus chihuahuana Engelm. and Pinus leiophylla Schltdl. & Cham. in Mexico. Botanical Sciences, 98(2), 305-316. DOI: 10.17129/botsci.2514
Manzanilla-Quiñones, U., Martínez-Adriano, C. y Aguirre-Calderón, O. (2019). Modelado espacial histórico y actual del oyamel (Abies religiosa [Kuth] Schltdl. & Cham.) en la Faja Volcánica Transmexicana. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 25(2), 201-217. DOI: 10.5154/r.rchscfa.2018.10.0706
Martínez-Méndez, N., Aguirre-Planter, E., Eguiarte, E. y Jaramillo-Correa, J. (2016). Modelado de nicho ecológico de las especies del género Abies (Pinaceae) en México: algunas implicaciones taxonómicas y para la conservación. Botanical Sciences, 94, 5-24. DOI: 10.17129/botsci.508
Martínez-Sifuentes, A., Villanueva-Díaz, J., Manzanilla-Quiñones, U., Becerra-López, J., Hernández-Herrera, J., Estrada-Ávalos, J. y Velázquez-Pérez, A. (2020). Spatial modeling of the ecological niche of Pinus greggii Engelm. (Pinaceae): a species conservation proposal in Mexico under climatic change scenarios. iForest-Biogeosciences and Forestry, 13(5), 426-434. DOI: 10.3832/ifor3491-013
Osorio‐Olvera, L., Lira‐Noriega A., Soberón J., Peterson A. T., Falconi M., Contreras‐Díaz, R., Barve, V. y Barve, N. (2020). ntbox: an R package with graphical user interface for modeling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.13452
Peterson, A., Soberón, J., Pearson, R., Anderson, R., Martínez-Meyer, E., Nakamura, M. y Araujo, M. (2011). Ecological Niches and Geographic Distributions. Princeton: Princeton University Press.
Phillips, S., Anderson, R. y Schaphire, R. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. DOI: 10.1016/j.ecolmodel.2005.03.026
R Core Team. (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Viena, Austria. Versión 4.0. Consultado 02 de abr. 2020. Recuperado de htpp://www.r-project.org
Sáenz-Romero, C., Rehfeldt, G., Crookston, N., Pierre, D., St-Amant, R., Beaulieu, J. y Richardson, B. (2010). Contemporary and projected Spline Climate surfaces for Mexico and their use in understanding Climate-plant relationships. Climatic Change, 102(3-4), 595-623. DOI: 10.1007/s10584-009-9753-5
Sáenz-Romero, C., Rehfeldt, G., Ortega-Rodríguez, J., Marín-Togo, M. y Madrigal-Sánchez, X. (2015). Pinus leiophylla hábitat adecuado para 1961-1990 y el clima futuro. Botanical Sciences 93, 709-718. DOI: 10.17129/botsci.86
Van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A. y Hibbard, K (2011). The representative concentration pathways: an overview. Climatic Change, 109, 5-31. DOI: 10.1007/s10584-011-0148-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gyorgy Eduardo Manzanilla-Quijada, Ulises Manzanilla-Quiñones , Eduardo Alanís-Rodríguez, Edgar Silva-González
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.