Application of remote sensors and artificial intelligence in the management and conservation of forests in the face of climate change in Mexico

Application of remote sensors and artificial intelligence in the management and conservation of forests in the face of climate change in Mexico

Authors

  • Eliceo Ruiz Guzmán Asesor de Investigación externo. Ingeniero Agrónomo Egresado de la Universidad de Guadalajara.
  • Agustín Gallegos Rodríguez Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • José Germán Flores Garnica
  • Salvador Mena Munguía

DOI:

https://doi.org/10.32870/e-cucba.vi21.332

Keywords:

Artificial Intelligence, forest monitoring, forest management, forecasting, biodiversity conservation

Abstract

The present review focuses on remote sensors and artificial intelligence (AI) are key tools for monitoring forests and understanding climate change. These sensors provide detailed information about the structure and status of forests, including the detection of deforestation, diseases, and pests, as well as the estimation of stored carbon. The combination of remote sensors with AI has revolutionized forest management, enabling soil classification, change detection, and forecasting the effects of climate change. They have also been valuable for biodiversity conservation, identifying areas of high diversity, monitoring ecosystems, and supporting the planning of conservation strategies. Advanced technologies such as drones, planes, satellite imagery, and LiDAR have also proven effective in environmental monitoring. Drones are versatile and cost-effective, planes cover large areas, satellites provide global data, and LiDAR is useful for characterizing forest structure. However, in Mexico overall, there is a lack of application and utilization of these technologies due to the absence of updated data and limited integration of AI. Investment in technological infrastructure and the promotion of collaboration between institutions are needed to overcome this gap and fully harness the potential of these tools in environmental decision-making.

References

Asner, G. P., Knapp, D. E., Martin, R. E., Tupayachi, R., Anderson, C. B., Carranza, L., ... y Wright, S. J. (2013a). Targeted carbon conservation at national scales with high-resolution monitoring. Proceedings of the National Academy of Sciences, 110(47), E5012-E5020. DOI: 10.1073/pnas.1315021110.

Asner, G. P., Mascaro, J., Muller-Landau, H. C., Vieilledent, G., Vaudry, R., Rasamoelina, M. y Hall, J. S. (2013b). A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia, 173(2), 463-485.

Asner, G. P., Mascaro, J., Muller-Landau, H. C., Vieilledent, G., Vaudry, R., Rasamoelina, M. y Knapp, D. E. (2015). A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia, 178(2), 501-511.

Barnes, M. L., Cattau, M. E. y Husak, G. J. (2016). Using LiDAR remote sensing to predict forest development and woody plant invasion in a temperate deciduous forest. Remote Sensing, 8(11), 934.

Bastin, J. F., Rutishauser, E., Kellner, J. R., Saatchi, S. S., Pélissier, R., Hérault, B., ... & Bogaert, J. (2019). Pan-tropical prediction of forest structure and carbon stocks from Sentinel-1 and -2. Remote Sensing of Environment, 221, 24-45.

Cavender-Bares, J., Gamon, J. A., y Townsend, P. A. (2020). Remote Sensing of Plant Biodiversity. Springer Open. DOI: 10.1007/978-3-030-33157-3

Chávez, R. E., Villa, J. R., Ramírez-Mancilla, J., & Trejo-Saldaña, R. (2019). Aplicación de la inteligencia artificial para el monitoreo y seguimiento de áreas naturales protegidas en México. En Memorias del XVIII Congreso Nacional de Ingeniería de Organización (CIO 2019) (pp. 559-568). DOI: 10.4995/CIO2019.2019.10783.

FAO. (2022). Global Forest Resources Assessment 2020. Main Report. Food and Agriculture Organization of the United Nations.Recuperado de http://www.fao.org/3/CA8755EN/CA8755EN.pdf.

Flores-Rodríguez, A. G., Flores-Garnica, J. G., González-Eguiarte, D. R., Gallegos-Rodríguez, A., Zarazúa-Villaseñor, P. y Mena-Munguía, S. (2022). Estimación de regeneración mediante variables ambientales e índices espectrales en ecosistemas con incendios forestales. e-CUCBA, (18), 28–39.

Gamon, J. A. y Townsend, P. A. (2019). Remote sensing of plant biodiversity. Remote Sensing of Environment, 233, 111339. DOI:10.1016/j.rse.2019.111339.

Gislason, P. O., Benediktsson, J. A. y Sveinsson, J. R. (2019). Artificial intelligence in earth observation-based forest monitoring. Remote Sensing, 11(8), 969. DOI: 10.3390/rs11080969.

Gislason, P. O., Benediktsson, J. A. y Sveinsson, J. R. (2019). Introduction to remote sensing. CRC Press. London, UK.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., ... y Kommareddy, A. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850-853.

Huete, A. R., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. y Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. DOI: 10.1016/S0034-4257(02)00096-2

IPCC. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. En V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, ... y T. Waterfield (Eds.). IPCC. https://www.ipcc.ch/sr15/.

Krause, J. M., Bellosi, E. S. y Bouza, P. J. (2018). Edafología y Paleosuelos. XVI Reunión Argentina de Sedimentología. Universidad Nacional de Río Negro

Korhonen, L., Hantula, J., & Härkönen, M. (2017). Remote sensing in forest health assessment—A review. Current Forestry Reports, 3(1), 1-14.

Liu, X., Zhang, L., Wu, Y., Huang, Y., Chen, G., Chen, X., ... & Chen, J. (2018). A comparison of classification algorithms for mapping tropical rainforest in the Amazon basin using multi-temporal L-band SAR imagery. Remote Sensing, 10(10), 1607. DOI: 10.3390/rs10101607.

López-Caloca, A. A., González-González, J. J., Zárate-Domínguez, E. D., Carrera-Hernández, J. J. y Palacios-Vargas, J. G. (2020). Análisis de la deforestación y cambio de uso de suelo en México: Limitantes en la adquisición de datos espaciales. Política y Cultura, (53), 13-41. DOI:10.24201/pyc.v0i53.2320.

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. DOI: 10.1080/01431169608948714

Molina, J. R., Vega-Garcia, C., Chuvieco, E., y Aguado, I. (2015). Mapping postfire vegetation recovery with high-resolution imagery: A case study in Central Spain using GeoEye-1 and WorldView-2. Journal of Applied Remote Sensing, 9(1), 096073.

Morsdorf, F., Kükenbrink, D., Schneider, F. D., Schaepman, M. E. y Gastellu-Etchegorry, J. P. (2018). Combined airborne laser scanning and imaging spectroscopy for forest canopy characterization. ISPRS Journal of Photogrammetry and Remote Sensing, 139, 38-55.

Muraoka, H., Nagai, S., Koizumi, H., Saitoh, T. M., Tamura, M., Suzuki, R., ... y Kajimoto, T. (2019). Remote sensing of vegetation function and traits: An overview. Remote Sensing, 11(19), 2275.

Palacios-Vargas, J. G., Ángeles-Pérez, G. y López-Caloca, A. A. (2020). Uso de drones en el monitoreo de la biodiversidad y la conservación de ecosistemas en México. En Memorias del XVIII Congreso Nacional de Ingeniería de Organización (CIO 2019) (pp. 1091-1098).

Romo-López, M. R., Muñoz-García, M. A., Ortega-Gutiérrez, F., Romero-Romero, J. L., y Tzompantzi-González, S. L. (2020). Aplicación de sensores remotos en el monitoreo de humedales costeros en México: estado actual y perspectivas futuras. Terra Latinoamericana, 38(1), 37-54.

Rouse, J. W., Haas, R. H., Schell, J. A. y Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. En Third Earth Resources Technology Satellite-1 Symposium, NASA SP-351, (1), 309-317.

Van Wagtendonk, J. W., Root, R. R. y Key, C. C. (2013). Comparison of airborne and satellite high-resolution image data for emergency response to a forest fire. Remote Sensing, 5(5), 2303-2322.

Vihemäki, H., Repola, J., Korhonen, L. y Lähde, E. (2017). Mapping degraded peatlands for restoration planning using airborne laser scanning and hyperspectral data. Remote Sensing, 9(11), 1132.

Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., Woodcock, C. E. y Fosnight, E. A. (2018). Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 204, 2-10.

Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., ... y Olofsson, P. (2019). The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 225, 161-176. DOI: 10.1016/j.rse.2019.02.029.

Zhu, Z. y Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152-171.

Published

2024-01-05

How to Cite

Ruiz Guzmán, E., Gallegos Rodríguez, A., Flores Garnica, J. G., & Mena Munguía, S. (2024). Application of remote sensors and artificial intelligence in the management and conservation of forests in the face of climate change in Mexico: Application of remote sensors and artificial intelligence in the management and conservation of forests in the face of climate change in Mexico. E-CUCBA, (21), 142–149. https://doi.org/10.32870/e-cucba.vi21.332

Most read articles by the same author(s)