Hypoglycemic effects of organic extracts from Ganoderma sp. and Kombucha in streptozotocin-induced diabetic Wistar rats

Hypoglycemic effects of organic extracts from Ganoderma sp. and Kombucha in streptozotocin-induced diabetic Wistar rats

Authors

  • Pedro Hinojosa-Gómez Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Dulce Anahí Pérez-Arvizo Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Nancy Janette Márquez-Delgadillo Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • José Ricardo Cuéllar-Pérez Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Guillermo Nolasco-Rodríguez Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Lucía García-Delgado Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Esther Albarrán-Rodríguez Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Manuel Rosales-Cortés Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.

DOI:

https://doi.org/10.32870/e-cucba.vi23.355

Keywords:

streptomycin, insulin, islets of Langerhans

Abstract

Evaluate the hypoglycemic effects of Kombucha and Ganoderma aqueous extracts in a model of diabetes with streptozotocin. Eight-week-ol male wistar rats weighimg approximately 180 g were randomized into four groups (12 rats each group). Control group (C), streptozotocin (E) without treatment, Kombucha (K) was given Kombucha extract 324 mg/kg orally, and Ganoderma group (G) was given 250 mg/kg orally both for 45 days. Four animals per group were sacrificed at 2-, 15- and 45-days post treatment. Consumption of water and food were registered. Blood glucose and insulin levels were measured by spectrophotometry and the islets of Langerhans in the pancreas were quantified by ELISA assay. Data were analyzed with an ANOVA two-ways and Tukey’s test as post hoc, Sigmastat 3.1 Software was used and 0.05% significance was considered. Among the main results found, both extracts presented hypoglycemic effects after 15 days of treatment. An interaction between the number of islets, insulin synthesis, water, and food consumption were also found with the streptozotocin group that presented the lowest average number of islets compared to other groups. Both extracts showed a hypoglycemic, protective and regenerative effect on the pancreas, with differences observed in the physical condition of the animals treated with Ganoderma, which showed signs of cachexia.

References

Aloulou, A., Hamden, K., Elloumi, D., Ali, M. B., Hargafi, K., Jaouadi, B., Ayadi, F., Elfeki, A. y Ammar, E. (2012). Hypoglycemic and antilipidemic properties of kombucha tea in alloxan-induced diabetic rats. BMC complementary and alternative medicine, 12, 63. https://doi.org/10.1186/1472-6882-12-63

Bach, E. E., Hi, E. M. B., Martins, A. M. C., Nascimento, P. A. M. y Wadt, N. S. Y. (2018). Hypoglicemic and Hypolipedimic Effects of Ganoderma lucidum in Streptozotocin-Induced Diabetic Rats. Medicines (Basel, Switzerland), 5(3), 78. https://doi.org/10.3390/medicines5030078

Bhattacharya, S., Oksbjerg, N., Young, J. F. y Jeppesen, P. B. (2014). Caffeic acid, naringenin and quercetin enhance glucose-stimulated insulin secretion and glucose sensitivity in INS-1E cells. Diabetes, obesity & metabolism, 16(7), 602–612. https://doi.org/10.1111/dom.12236

Bhattacharya, S., Gachhui, R. y Sil, P. C. (2013). Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 60, 328–340. https://doi.org/10.1016/j.fct.2013.07.051

Cervantes-Villagrana, R.D. y Presno-Bernal, J.M. (2013). Fisiopatología de la diabetes y los mecanismos de muerte de las células β pancreáticas. Revista de Endocrinología y Nutrión 21(3), 98-106.

Chen, X. Q., Zhao, J., Chen, L. X., Wang, S. F., Wang, Y. y Li, S. P. (2018). Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α-glucosidase. Phytochemistry, 149, 103–115. https://doi.org/10.1016/j.phytochem.2018.01.007

Coskun, O., Kanter, M., Korkmaz, A. y Oter, S. (2005). Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacological research, 51(2), 117–123. https://doi.org/10.1016/j.phrs.2004.06.002

Coughlan, K. A., Valentine, R. J., Ruderman, N. B. y Saha, A. K. (2014). AMPK activation: a therapeutic target for type 2 diabetes?. Diabetes, metabolic syndrome and obesity : targets and therapy, 7, 241–253. https://doi.org/10.2147/DMSO.S43731

Dufresne, C. y Farnworth, E. (2000). Tea, Kombucha, and health: a review. Food Research International, 33(6), 409–421. https://doi.org/10.1016/S0963-9969(00)00067-3

Flores, C., Márquez, Y., López-Ortega, A., Mendoza, C., Colmenarez, V. y Salas, Y. (2006). Caracterización de la Diabetes Mellitus experimental inducida con streptozotocina en ratones NMRI. Gaceta de Ciencias Veterinarias, 12(1), 13-18.

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H. y Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International journal of molecular sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275

González-Téllez, S.V., Vázquez-Olivares, D.A., Espinosa-Raya, J.B. y Gómez-Pliego, R.A. (2019). Estudio comparativo del microbiota aislado del Hongo Kombucha y su uso en la elaboración de alimentos fermentados para Síndrome metabólico. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 4, 237-247.

Hayes-Dorado, J.P. (2008). Diabetes mellitus tipo 1. Revista de la Sociedad Boliviana de Pediatría, 47(2), 90-96. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1024-06752008000200006&lng=es&tlng=es.

Heffess, C.S. y Mullick, F.G. (1995). Métodos histotecnológicos. Washington: Registro de patología de las Fuerzas Armadas de los Estados Unidos de América (AFIP).

Jayabalan, R., Baskaran, S., Marimuthu, S., Swaminathan, K. y Yun, S. E. (2010). Effect of Kombucha Tea on Aflatoxin B1 Induced Acute Hepatotoxicity in Albino Rats-prophylactic and Curative Studies. Journal of the Korean Society for Applied Biological Chemistry, 53, 407–416. https://doi.org/10.3839/jksabc.2010.063

Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S. y Sathishkumar, M. (2014). A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Comprehensive reviews in food science and food safety, 13(4), 538–550. https://doi.org/10.1111/1541-4337.12073.

Junod, A., Lambert, A. E., Stauffacher, W. y Renold, A. E. (1969). Diabetogenic action of streptozotocin: relationship of dose to metabolic response. The Journal of clinical investigation, 48(11), 2129–2139. https://doi.org/10.1172/JCI106180

Kao, Ch.H.J., Jesuthasan, A.C., Bishop, K.S., Glucina, M.P. y Ferguson, L.R. (2013). Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways. Functional Foods in Health Disease, 3(2), 48-65.

Kobori, M., Yoshida, M., Ohnishi-Kameyama, M. y Shinmoto, H. (2007). Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. British journal of pharmacology, 150(2), 209–219. https://doi.org/10.1038/sj.bjp.0706972

Ma, H. T., Hsieh, J. F. y Chen, S. T. (2015). Anti-diabetic effects of Ganoderma lucidum. Phytochemistry, 114, 109–113. https://doi.org/10.1016/j.phytochem.2015.02.017

Martínez-Leal, J., Valenzuela-Suárez, L., Jayabalan, R., Huerta-Oros, J. y Escalante-Aburto, A. (2018). A review on health benefits of kombucha nutritional compounds and metabolites. CyTA - Journal of Food, 16(1): 390-399.

Mendivil-Olimpo, C.O. y Sierra-Ariza, I.D. (2005). Acción insulínica y resistencia a la insulina: aspectos moleculares. Revista de la Facultad de Medicina de la Universidad Nacional de Colombia, 53(4): 235-43. https://revistas.unal.edu.co/index.php/revfacmed/article/view/43622/44925

Naranjo, Q.J.C. y Ávila, C.M.C. (2018) Kombucha. Medusomyces Gisevi, Kombucha. https://www.academia.edu/36279821/KOMBUCHA

Nolasco-Rodríguez, G., González-Valadez, R., García-Delgado, L., Albarrán-Rodríguez, E., Cuellar-Pérez, J.R., Bañuelos-Pineda, J. y Rosales-Cortés, M. (2020). Efecto hipoglucemiante de componentes no polares del extracto de kombucha en un modelo de diabetes en ratas. Majorensis, 16, 47-54.

Nolasco-Rodríguez, G., González-Valadez, R., García-Delgado, L., Albarrán-Rodríguez, E., Cuellar-Pérez, J.R., Bañuelos-Pineda, J. y Rosales-Cortés, M. (2022). Effect of Kombucha and Its Non-Polar Components on Morphological Aspects of the Pancreas of Diabetic Rats with Streptozotocin. Open Journal of Veterinary Medicine, 12, 201-217. https://doi.org/10.4236/ojvm.2022.1212016

Olinda, D.F. y Shenoy, Ch.K. (2016). Protective effect of kombucha on diabetic nephropathy in streptozotocin - induced diabetic rats. International Journal of Science and Research (IJSR), 5(3): 945-948. https://doi.org/10.21275/v5i3.nov161951

Oluba, O. M., Onyeneke, E. C., Ojieh, G. C., Idonije, B. O. y Ojiezeh, T. I. (2010). Hepatoprotective Potential of Aqueous Extract of Ganoderma lucidum Against Carbon Tetrachloride Intoxication in Rats. Der Pharmacia Lettre, 2(4): 432-439. https://www.scholarsresearchlibrary.com/abstract/determination-of-glibenclamide-in-tablets-by-densitometric-hptlc-5085.html

Organización Mundial de la Salud. (2016). Informe mundial sobre la diabetes. Ginebra.

Pavlović, M. O., Stajić, M., Gašić, U., Duletić-Laušević, S. y Ćilerdžić, J. (2023). The chemical profiling and assessment of antioxidative, antidiabetic and antineurodegenerative potential of Kombucha fermented Camellia sinensis, Coffea arabica and Ganoderma lucidum extracts. Food & function, 14(1), 262–276. https://doi.org/10.1039/d2fo02979k

Rivas-Alpizar, E., Zerquera-Trujillo, G., Hernández-Gutiérrez, C. y Vicente-Sánchez, B. (2011). Manejo práctico del paciente con diabetes mellitus en la Atención Primaria de Salud. Revista Finlay [revista en Internet], 1(3), 229-250. https://revfinlay.sld.cu/index.php/finlay/article/view/69

Rojas de P, E., Molina, R. y Rodríguez, C. (2012). Definición, clasificación y diagnóstico de la diabetes mellitus. Revista Venezolana de Endocrinología y Metabolismo, 10(Supl. 1), 7-12. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1690-31102012000400003&lng=es&tlng=es.

Sánchez-Martínez, B., Vega-Falcón, V., Gómez-Martínez, N. y Vilema-Vizuete, G.E. (2020). Estudio de casos y controles sobre factores de riesgo de diabetes mellitus tipo 2 en adultos mayores. Revista Universidad y Sociedad, 12(4), 156-164. https://rus.ucf.edu.cu/index.php/rus/article/view/1626/1631

Seto, S. W., Lam, T. Y., Tam, H. L., Au, A. L., Chan, S. W., Wu, J. H., Yu, P. H., Leung, G. P., Ngai, S. M., Yeung, J. H., Leung, P. S., Lee, S. M. y Kwan, Y. W. (2009). Novel hypoglycemic effects of Ganoderma lucidum water-extract in obese/diabetic (+db/+db) mice. Phytomedicine : international journal of phytotherapy and phytopharmacology, 16(5), 426–436. https://doi.org/10.1016/j.phymed.2008.10.004

Smina, T. P., Mathew, J., Janardhanan, K. K. y Devasagayam, T. P. (2011). Antioxidant activity and toxicity profile of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst occurring in South India. Environmental toxicology and pharmacology, 32(3), 438–446. https://doi.org/10.1016/j.etap.2011.08.011

Szkudelski T. (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological research, 50(6), 537–546.

Vargas-Mora, F.J. (2011). Elaboración de una bebida refrescante fermentando la simbiosis kombucha con el objeto de mejorar la calidad de vida de los consumidores de bebidas no alcohólicas. Tesis de licenciatura. Facultad de Ciencia e Ingeniería en Alimentos. Universidad Técnica de Ambato. Ecuador.

Wińska, K., Mączka, W., Gabryelska, K. y Grabarczyk, M. (2019). Mushrooms of the Genus Ganoderma Used to Treat Diabetes and Insulin Resistance. Molecules (Basel, Switzerland), 24(22), 4075. https://doi.org/10.3390/molecules24224075

Xu, Z., Chen, X., Zhong, Z., Chen, L. y Wang, Y. (2011). Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. The American journal of Chinese medicine, 39(1), 15–27. https://doi.org/10.1142/S0192415X11008610

Yue, Q. X., Song, X. Y., Ma, C., Feng, L. X., Guan, S. H., Wu, W. Y., Yang, M., Jiang, B. H., Liu, X., Cui, Y. J. y Guo, D. A. (2010). Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells. Phytomedicine: international journal of phytotherapy and phytopharmacology, 17(8-9), 606–613. https://doi.org/10.1016/j.phymed.2009.12.013

Zheng, Y., Bai, L., Zhou, Y., Tong, R., Zeng, M., Li, X., y Shi, J. (2019). Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. International journal of biological macromolecules, 121, 1240–1253. https://doi.org/10.1016/j.ijbiomac.2018.10.072

Published

2024-09-01

How to Cite

Hinojosa-Gómez , P., Pérez-Arvizo , D. A., Márquez-Delgadillo, N. J., Cuéllar-Pérez, J. R., Nolasco-Rodríguez , G., García-Delgado , L., … Rosales-Cortés , M. (2024). Hypoglycemic effects of organic extracts from Ganoderma sp. and Kombucha in streptozotocin-induced diabetic Wistar rats : Hypoglycemic effects of organic extracts from Ganoderma sp. and Kombucha in streptozotocin-induced diabetic Wistar rats . E-CUCBA, (23), 30–37. https://doi.org/10.32870/e-cucba.vi23.355

Most read articles by the same author(s)