Estudios de inteligencia artificial para mejorar el desempeño de modelos estadísticos en codigestión anaerobia

Artificial intelligence studies to improve the performance of statistical models in anaerobic codigestion

Autores/as

  • Juan Pablo Morales Rivera Universidad de Guadalajara. Centro Universitario de Tonalá.
  • Jean Michelle Flores Gómez Universidad de Guadalajara. Centro Universitario de Tonalá.
  • Francisco González Torres Universidad de Guadalajara. Centro Universitario de Tonalá.

DOI:

https://doi.org/10.32870/e-cucba.vi23.359

Palabras clave:

Análisis estadístico, optimización, red neuronal artificial

Resumen

Este trabajo busca aplicar inteligencia artificial para mejorar los resultados obtenidos por modelos basados en sistemas estadísticos como la metodología de superficie de respuesta (MSR) en la literatura, empleando técnicas computacionales basadas en IA, que han demostrado ser valiosas para el diseño y predicción del comportamiento de los sistemas de digestión anaerobios, se empleó una matriz de 3 por 3 para encontrar la mejor arquitectura para la red neuronal, logrando mejorar el rendimiento del modelo propuesto en la literatura que logra de R² de 0.90 y con esta metodología empleada en esta investigación se logra un ajuste R² de 0.99.

Citas

Abdelhay, A., Albsoul, A., Hadidi, F. y Abuothman, A. (2016). Optimization and Modeling of Biogas Production From Green Waste/Biowaste Co‐Digestion Using Leachate and Sludge. CLEAN–Soil, Air, Water, 44(11), 1557-1563. https://doi.org/10.1002/clen.201500514

Ahmad, A., Yadav, A. K., Singh, A. y Singh, D. K. (2023). Optimisation of biogas yield from anaerobic co-digestion of dual waste for environmental sustainability: ANN, RSM and GA approach. International Journal of Oil, Gas and Coal Technology, 33(1), 75-101. https://doi.org/10.1504/IJOGCT.2023.130377

Almomani, F. y Bhosale, R. R. (2020). Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments. Chemosphere, 255, 126805. https://doi.org/10.1016/j.chemosphere.2020.126805

Chen, Y., Song, L., Liu, Y., Yang, L. y Li, D. (2020). A review of the artificial neural network models for water quality prediction. Applied Sciences, 10(17), 5776. https://doi.org/10.3390/app10175776

Chow, W. L., Chong, S., Lim, J. W., Chan, Y. J., Chong, M. F., Tiong, T. J., ... y Pan, G. T. (2020). Anaerobic co-digestion of wastewater sludge: A review of potential co-substrates and operating factors for improved methane yield. Processes, 8(1), 39. https://doi.org/10.3390/pr8010039

Cruz, I. A., Chuenchart, W., Long, F., Surendra, K. C., Andrade, L. R. S., Bilal, M., ... y Ferreira, L. F. R. (2022). Application of machine learning in anaerobic digestion: Perspectives and challenges. Bioresource Technology, 345, 126433. https://doi.org/10.1016/j.biortech.2021.126433

Haffiez, N., Chung, T. H., Zakaria, B. S., Shahidi, M., Mezbahuddin, S., Maal-Bared, R. y Dhar, B. R. (2022). Exploration of machine learning algorithms for predicting the changes in abundance of antibiotic resistance genes in anaerobic digestion. Science of The Total Environment, 839, 156211. https://doi.org/10.1016/j.scitotenv.2022.156211

Hatata, A., Galal, O. H., Said, N. y Ahmed, D. (2021). Prediction of biogas production from anaerobic co-digestion of waste activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network. Renewable Energy, 178, 226-240. https://doi.org/10.1016/j.renene.2021.06.050

Iweka, S. C., Owuama, K. C., Chukwuneke, J. L. y Falowo, O. A. (2021). Optimization of biogas yield from anaerobic co-digestion of corn-chaff and cow dung digestate: RSM and python approach. Heliyon, 7(11). https://www.cell.com/heliyon/pdf/S2405-8440(21)02358-6.pdf

Karki, R., Chuenchart, W., Surendra, K. C., Shrestha, S., Raskin, L., Sung, S., ... y Khanal, S. K. (2021). Anaerobic co-digestion: Current status and perspectives. Bioresource Technology, 330, 125001. https://doi.org/10.1016/j.biortech.2021.125001

Ma, G., Ndegwa, P., Harrison, J. H. y Chen, Y. (2020). Methane yields during anaerobic co-digestion of animal manure with other feedstocks: A meta-analysis. Science of the Total Environment, 728, 138224. https://doi.org/10.1016/j.scitotenv.2020.138224

Mohamadou, Y., Halidou, A. y Kapen, P. T. (2020). A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19. Applied Intelligence, 50(11), 3913-3925. https://doi.org/10.1007/s10489-020-01770-9

Mougari, N. E., Largeau, J. F., Himrane, N., Hachemi, M. y Tazerout, M. (2021). Application of artificial neural network and kinetic modeling for the prediction of biogas and methane production in anaerobic digestion of several organic wastes. International Journal of Green Energy, 18(15), 1584-1596. https://doi.org/10.1080/15435075.2021.1914630

Neto, J. G., Ozorio, L. V., de Abreu, T. C. C., Dos Santos, B. F. y Pradelle, F. (2021). Modeling of biogas production from food, fruits and vegetables wastes using artificial neural network (ANN). Fuel, 285, 119081. https://doi.org/10.1016/j.fuel.2020.119081

Zeb, A., Alzahrani, E., Erturk, V. S. y Zaman, G. (2020). Mathematical model for coronavirus disease 2019 (COVID‐19) containing isolation class. BioMed research international, 2020(1), 3452402. https://doi.org/10.1155/2020/3452402

Zaied, B. K., Rashid, M., Nasrullah, M., Bari, B. S., Zularisam, A. W., Singh, L., ... y Krishnan, S. (2020). Prediction and optimization of biogas production from POME co-digestion in solar bioreactor using artificial neural network coupled with particle swarm optimization (ANN-PSO). Biomass Conversion and Biorefinery, 1-16. https://link.springer.com/article/10.1007/s13399-020-01057-6

Descargas

Publicado

2024-09-01

Cómo citar

Morales Rivera, J. P., Flores Gómez, J. M., & González Torres, F. (2024). Estudios de inteligencia artificial para mejorar el desempeño de modelos estadísticos en codigestión anaerobia : Artificial intelligence studies to improve the performance of statistical models in anaerobic codigestion. E-CUCBA, (23), 24–29. https://doi.org/10.32870/e-cucba.vi23.359