Secondary metabolites biosynthesized by spinach (Spinacea oleracea L.) and the in vitro culture: A review

Secondary metabolites biosynthesized by spinach (Spinacea oleracea L.) and the in vitro culture: A review

Authors

  • Braulio Edgar Herrera Cabrera Colegio de Postgraduados. Programa de Estrategias para el Desarrollo Agrícola Regional.
  • Jorge Montiel Montoya Instituto Politécnico Nacional Unidad Sinaloa. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional.
  • Rafael Salgado Garciglia Universidad Michoacana de San Nicolás de Hidalgo. Instituto de Investigaciones Químico Biológicas.
  • Luz María Basurto González Instituto Tecnológico de Estudios Superiores de Zamora. Carrera en Ingeniería en Innovación Agrícola Sustentable.
  • Andrés Carrillo del Rio Instituto Tecnológico de Estudios Superiores de Zamora. Carrera en Ingeniería en Innovación Agrícola Sustentable.
  • Bryan Jesús Vega Navarro Instituto Tecnológico de Estudios Superiores de Zamora. Carrera en Ingeniería en Innovación Agrícola Sustentable.
  • Hebert Jair Barrales Cureño Instituto Tecnológico de Estudios Superiores de Zamora. Carrera en Ingeniería en Innovación Agrícola Sustentable.

DOI:

https://doi.org/10.32870/e-cucba.vi21.318

Keywords:

Spinacetin, flavonoids, jaceidin, patuletin, 20-hydroxydisone

Abstract

Spinach belongs to the taxonomic family Amaranthaceae. It is an annual, fast-growing leafy vegetable considered to have high nutritional value. Its international production according to FAO estimates was 14 million tons, with China being the first producer (85%), followed by the United States (2.6%), Japan (2.2%) and Turkey (1.6%); while, in Mexico, in 2020 it was 49,313 tons (+27.3% compared to 2019) obtained from 2,853 ha harvested (+16.6%), so the national average yield was 17.3 ton/ha ( +9.2%). The main phytochemical constituents of spinach predominantly associated with the quality of spinach are total flavonoids, total phenolics and total carotenoids, due to their antioxidant activity (Bergquist, 2006). Its valuable medicinal properties include anticancer, antimutagenic, anti-inflammatory, antiproliferative, anticancer, antibacterial, hepatoprotective, hypolipidemic, and suppressors of the Central Nervous System. The present work is a review on the origin, medicinal properties, agronomic profile, profile of biosynthesized primary and secondary metabolites, in vitro culture of Spinacea oleracea and data on the phytochemical composition of the secondary metabolites of spinach detected by analytical techniques.

References

Abdelgawad, S.M., Hetta, M.H., Ibrahim, M.A. (2022). Phytochemical Investigation of Egyptian Spinach Leaves, a Potential Source for Antileukemic Metabolites: In Vitro and In Silico Study. Rev Bras Farmacogn, 32, 774–785. DOI: 10.1007/s43450-022-00307-0

Abdul-Wahab, F. y Abdul Jalil, T.(2012). Study of Iraqi Spinach Leaves (Phytochemical and Protective Effects Against methotrexate-Induced hepatotoxicity in rats). Iraqi J Pharm Sci, 21, 8-17.

Altemimi, A., Lakhssassi, N., Abu-Ghazaleh A. y Lightfoot, D.A. (2017). Evaluation of the antimicrobial activities of ultrasonicated spinach leaf extracts using rapd markers and electron microscopy. Arch Microbiol, 1–13, DOI: 10.1007/s00203-017-1418-6.

Bagheri, R., Bashir, H., Ahmad, J., M. Iqbal y Qureshi, M.I. (2015). Spinach (Spinacia oleracea L.) modulates its proteome differentially in response to salinity, cadmium and their combination stress. Plant Physiol Biochem, 97,235-45. DOI: 10.1016/j.plaphy.2015.10.012.

Bergman, M., Varshavsky, L., Gottlieb, H.E. y Grossman, S. (2001). The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemistry, 58,143-152.

Cai, X., Sun, X., Xu.,C., Sun, H., Wang, X. , Ge, C., Zhang, Z., Wang, Q., Fei, Z., Jiao, C. y Wang, Q. (2021). Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits. Nature Communications. 12.

Das, S y Guha, D. (2008). CNS depressive role of aqueous extract of Spinacia oleracea L. leaves in adult male albino rats. Indian J Exp Biol, 46,185–90.

Geekiyanage, S., Takase, T., Watanabe, S., Fukai, S. y Kiyosue, T. (2006). The combined effect of photoperiod, light intensity and GA3 on adventitious shoot regeneration from cotyledons of spinach (Spinacia oleracea L.). Plant Biotechnol, 23, 431–435.

Hetta, M.H., Moawad, A.S., Hamed, M.A.A y Sabri, A.I. (2017). In-vitro and In-vivo hypolipidemic activity of spinach roots and flowers. Iran J Pharm Sci, 16,1509.

Howard, L.R., Pandjaitan, N., Morelock, T y Gil, M.I. (2002). Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J. Agric. Food Chem, 50(21),5891-5896.

Hu, J. y Gao, J. (2020). Validation of a hplc method for flavoind contents in spina gleditsiae and its use to illustrate the various quality of cultivated varieties. Natural Product Communications, 15(8),193. DOI: 10.1177/1934578X20946258

Kabera, J., Semana, E., Mussa, A y He, X. (2014). Plant Secondary Metabolites: Biosynthesis, Classification, Function and Pharmacological Properties. J Pharma Pharm, 2, 377-392

Kidmose, U., Edelenbos, M. y Knuthsen, P. (2001). Carotenoids and flavonoids in organically grown spinach (Spinacia oleracea L) genotypes after deep frozen storage. Journal of the Science of Food and Agriculture, 81(9), 918-931.

Komai, F., Okuse, I. y Harada, T. (1996). Somatic embryogenesis and plant regeneration in culture of root segments of spinach (Spinacia oleracea L.). Plant Science, 113, 203-208. DOI:10.1016/0168-9452(95)04285-7

Leguillon, S., Charles, G. y Branchard, M. (2003). Plant regeneration from thin cell layers in Spinacia oleracea. Plant Cell, Tissue and Organ Culture, 74.

Li, Y., D. Kong., Y. Fu., M.R. Sussman y Wu, H. (2020)The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Phys Biochem. 148:80-89.

Lomnitski, L., Carbonatto, M., Ben-Shaul, V., Peano, S. y A. Conz (2000). The prophylactic effects of natural water-soluble antioxidant from spinach and apocynin in a rat model of lipopolysaccharide-induced endotoxemia. Toxicol Pathol, 28,588-600.

Murcia, M.A., Jiménez, M., Gonzalez, J y Martínez-Tomé, M. (2020). Spinach. En Nutritional Composition and Antioxidant Properties of Fruits and Vegetables. Academic Press,181-195.

Nyska, A., Suttie, A., Bakshi, S., Lomnitski, L. Grossman, S., Bergman, M., Ben-Shaul, V., Crocket, P., Haseman, J.K., Moser, G., Goldsworthy, R. y Maronpot, R. (2003). Slowing tumorigenic progression in TRAMP mice and prostatic carcinoma cell lines using natural anti-oxidant from spinach, NAO--a comparative study of three anti-oxidants. Toxicol Pathol, 31,39-51. doi: 10.1080/01926230390173833.

Nyska, A., Lomnitski, L., Spalding, J., Dunson, D.B., Goldsworthy, T.L., Ben-Shaul, V., Grossman, S., Bergman, M. y Boorman, G. (2001). Topical and oral administration of the natural water-soluble antioxidant from spinach reduces the multiplicity of papillomas in the Tg.AC mouse model. Toxicol Lett, 122, 33-44. DOI: 10.1016/s0378-4274(01)00345-9.

Pandjaitan, N., Howard, L.R., Morelock, T. y Gil, M.I. (2005). Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. J. Agric. Food Chem, 53(22), 8618–23.

Roberts, J.L. y Moreau, R. (2016). Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food & Function, 7(8), 3337-3353. DOI: 10.1039/c6fo00051g

Sara, A., Ulla, E.G., Knuthsen, P. y Olsson, M.E. (2005). Flavonoids in baby spinach (Spinacia oleracea L.): changes during plant growth and storage. J Agric Food Chem, 30;53(24), 9459-64. DOI: 10.1021/jf051430h.

Singh, A., Singh, P., Kumar, B., Kumar, S. y Maurya, R. (2019). Detection of flavonoids from Spinacia oleracea leaves using HPLC-ESI-QTOF-MS/MS and UPLC-QqQLIT-MS/MS techniques. Natural Product Research, 33(15), 2253-2256. DOI: 10.1080/14786419.2018.1489395

Van Nguyen, Q., Sun, H., Boo, K., Lee, D., Lee, J., Lim, P., Lee, H., Riu, K. y Lee, D. (2013). Effect of plant growth regulator combination and culture period on in vitro regeneration of spinach (Spinacia oleracea L.). Plant Biotechnology Reports ,7, 99–108.

Vázquez, E., García-Risco, M., Jaime, L., Reglero, G. y Fornari, T. (2013). Simultaneous extraction of rosemary and spinach leaves and its effect on the antioxidant activity of products. J Supercrit Fluids, 82,138–45.

Xu, C., C. Jiao, H. Sun, X. Cai, X. Wang, C. Ge, Y. Zheng, W. Liu, X. Sun, Y. Xu, J. Deng, Z. Zhang, S. Huang, S. Dai, B. Mou, Q. Wang, Z. Fei y Q. Wang. (2017). Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications. 8.

Zhang, H., L. Lu, X. Zhao, S. Zhao, X. Gu, W. Du, H. Wei, R. Ji y L. Zhao. (2019). Metabolomics Reveals the "Invisible" Responses of Spinach Plants Exposed to CeO2 Nanoparticles. Environ Sci Technol, 21, 53(10), 6007-6017. DOI: 10.1021/acs.est.9b00593.

Published

2024-01-05

How to Cite

Herrera Cabrera , B. E., Montiel Montoya , J., Salgado Garciglia, R., Basurto González, L. M., Carrillo del Rio, A., Vega Navarro, B. J., & Barrales Cureño, H. J. (2024). Secondary metabolites biosynthesized by spinach (Spinacea oleracea L.) and the in vitro culture: A review: Secondary metabolites biosynthesized by spinach (Spinacea oleracea L.) and the in vitro culture: A review. E-CUCBA, (21), 10–18. https://doi.org/10.32870/e-cucba.vi21.318