Estimated effects of climate variability on agricultural production in Colombia

Estimated effects of climate variability on agricultural production in Colombia

Authors

  • Sioux Fanny Melo León Departamento Nacional de Planeación.
  • Germán David Romero Otálora Departamento Nacional de Planeación.
  • Diego Alejandro Buitrago Departamento Nacional de Planeación.
  • Leidy Caterine Riveros Departamento Nacional de Planeación.
  • Carolina Díaz Giraldo Departamento Nacional de Planeación.
  • Santiago A. Roa-Ortiz Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA. Centro de Investigación.

DOI:

https://doi.org/10.32870/e-cucba.vi21.330

Keywords:

Agricultural economics, climate adaptation, irrigation districts, multidimensional data panel

Abstract

The objectives of this document are to assess the impact of climate variability on agricultural production in Colombia and identify the effectiveness of irrigation districts as an adaptation measure. For the analysis, a panel of multidimensional data with random effects was used to estimate the effect on crops reported in 1,101 Colombian municipalities, between 2007 and 2017. Two variables were taken as climatic shocks: the sum of the absolute differences in the monthly precipitation compared to its historical mean and the average of the differences in the monthly temperature with respect to its historical average. The interaction between irrigation districts and rainfall levels was used as an adaptability variable. The results indicate that the three-dimensional data panel model presented in this paper showed great applicability despite its low use and the small number of documents that exist on climate effects on agricultural production. The main conclusions are that temperature increases lead to decreases in agricultural production and that irrigation districts as a measure of adaptation to climate variability do not appear to have a significant impact to counteract it. We found that practices such as the use of shades could influence the reduction of temperatures locally. Similarly, it is necessary to analyses the impact of measures that mitigate the effects associated with changes in temperature rather than those related to the precipitation regime.

References

Adams, R. M., Hurd, B. H., Lenhart, S. y Leary, N. (1998). Effects of global climate change on agriculture: an interpretative review. Climate research, 11(1), 19-30.

Adams, R. M., Hurd, B. H. y Reilly, J. (1999). Agriculture & global climate change: a review of impacts to U.S. agricultural resources. Prepared for the Pew Center on Global Climate Change, February.

Allwood J.M., V. Bosetti, N.K., Dubash., Gómez-Echeverri, L y C., von Stechow. (2014). Glossary. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel & J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

ANDI. (2019). Colombia: Balance 2018 y Perspectivas 2019. Recuperado de https://bit.ly/2IqofVP

Balázsi, L. y Mátyás, L. (2017). The Econometrics of Linear Models for Multi-dimensional Panels (Doctoral dissertation, Central European University Budapest, Hungary).

Balazsi, L., Matyas, L. y Wansbeek, T. (2018). The estimation of multidimensional fixed effects panel data models. Econometric Reviews, 37(3), 212-227.

BID-CEPAL-DNP. (2014). Impactos Económicos del Cambio Climático. (S. Calderón, G. Romero, A. Ordóñez, A. Álvarez, C. Ludeña, L. Sánchez, . . . M. Pereira, Edits.) Washington D.C.: Banco Interamericano de Desarrollo, Monografía No. 221 y Naciones Unidas, LC/L.3851.

Balazsi, L., Matyas, L. y Wansbeek, T. (2018). The estimation of multidimensional fixed effects panel data models. Econometric Reviews, 37:3, 212-227, DOI: 10.1080/07474938.2015.1032164

Bryant, C. R., Smit, B., Brklacich, M., Johnson, T., Smithers, J., Chiotti, Q. y Singh, B. (2000). Adaptation in Canadian agriculture to climatic variability and change. Climatic Change, 45, 181–201.

Chen, C. C., McCarl, B. A. y Schimmelpfennig, D. E. (2004). Yield variability as influenced by climate: A statistical investigation. Climatic Change, 66(1-2), 239-261.

CIIFEN. (Sine Die). ¿Qué es el cambio climático? Recuperado de https://bit.ly/2rlC4P8

DNP. (2018). Documento CONPES 3926. Política de Adecuación de Tierras 2018-2038. Recuperado de https://bit.ly/39KdHM6.

Fernández, M. (2013). Efectos del Cambio Climático en la Producción y Rendimiento de Cultivos por Sectores. Evaluación del Riesgo Agroclimático por Sectores. Fondo Financiero De Proyectos De Desarrollo–FONADE e Instituto De Hidrología, Meteorología Y Estudios Ambientales–IDEAM. Recuperado de https://bit.ly/2bD4xYg.

Germino, M. J., Fisk, M. R. y Applestein, C. (2019). Bunchgrass Root Abundances and Their Relationship to Resistance and Resilience of Burned Shrub-Steppe Landscape. Rangeland Ecology & Management, 72(5), 783-790.

IDEAM (2019). Estudio Nacional del Agua 2018. Bogotá: Ideam.

IPCC. (2014). Climate change: Impacts, adaptation, and vulnerability: Regional aspects. Cambridge: University Press.

IPCC. (2007). Climate Change 2007: impacts, adaptation, and vulnerability. Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. y Hanson, C.E. (Eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK.

IPCC. (2018). Annex I: Glossary [Matthews, J.B.R. (ed.)]. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable

development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press

Isik, M. y Devadoss, S. (2006). An analysis of the impact of climate change on crop yields and yield variability. Applied Economics, 38(7), 835-844.

Just, D., Wolf, S. A., Wu, S. y Zilberman, D. (2006). Effect of information formats on information services: Analysis of four selected agricultural commodities in the U.S. Agricultural Economics, 35, 289–301

Lewandrowski, J. & Schimmelpfennig, D. (1999). Economic implications of climate change for U.S. agriculture: assessing recent evidence. Land Economics, 75, 39–57.

Mátyás, L. y Balázsi, L. (2013). The estimation of multi-dimensional fixed effects panel data models (No. 2012_2). Department of Economics, Central European University.

McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J. y White, K. S. (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability, Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge.

Mendelsohn, R., Nordhaus, W. D. y Shaw, D. (1994). The impact of global warming on agriculture: a Ricardian analysis. American Economic Review, 84, 753–71.

Mendelsohn, R., Nordhaus, W. D. y Shaw, D. (1996). Climate impacts on aggregate farm values: accounting for adaptation. Agriculture and Forest Meteorology, 80, 55–67.

Ortiz, S. A. R. y Gonzalez, J. P. (2017). Selección de tecnologías para la adaptación al cambio climático en el sector cacaotero huilense. Crecer Empresarial: Journal of Management and Development.

Perfetti, J., Delgado, M., Blanco, J., Paredes, G., García, A., Naranjo, J., Pantoja, J. y González, L. (2019). Adecuación de tierras y el desarrollo de la agricultura colombiana: políticas e instituciones. No. 017614. Fedesarrollo.

Polsky, C. & Easterling, W. E. (2001) Adaptation to climate variability and change in the U.S. Great Plains: a multiscale analysis of Ricardian climate sensitivities, Agriculture, Ecosystems and Environment, 85(1–3), 133–44.

Santer, B. (1984). The impacts of a CO2-induced climatic change on the agricultural sector of the European Communities. En Socioeconomic Impacts of Climatic Changes Due to a Doubling of Atmospheric CO2 Content (Eds) H. Meinl et al., Commission of the European Communities, Contract No. CLI-063-D, Dornier-System, Friedriehshafen.

Sun, S., Zhang, C., Li, X., Zhou, T., Wang, Y., Wu, P. y Cai, H. (2017). Sensitivity of crop water productivity to the variation of agricultural and climatic factors: A study of Hetao irrigation district, China. Journal of cleaner production, 142, 2562-2569.

Tao, F., Zhang, Z., Liu, J., y Yokozawa, M. (2009). Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemble-based probabilistic projection. Agricultural and Forest Meteorology, 149(8), 1266-1278.

Tao, F., Hayashi, Y., Zhang, Z., Sakamoto, T., & Yokozawa, M. (2008). Global warming, rice production, and water use in China: developing a probabilistic assessment. Agricultural and forest meteorology, 148(1), 94-110.

Tao, F., Yokozawa, M., Hayashi, Y. y Lin, E. (2003). Future climate change, the agricultural water cycle, and agricultural production in China. Agriculture, ecosystems & environment, 95(1), 203-215.

Unidad Nacional para la Gestión del Riesgo de Desastres (UNGRD). (2016). Fenómeno El Niño: Análisis comparativo 1997 - 1998 // 2014 - 2016.

Wang, M. H., Shao, G. C., Meng, J. J., Chen, C. R. y Huang, D. D. (2015). Variable fuzzy assessment of water use efficiency and benefits in irrigation district. Water Science and Engineering, 8(3), 205-210.

Williams, K. D., Ringer, M. A. y Senior, C. A. (2003). Evaluating the cloud response to climate change and current climate variability. Climate Dynamics, 705–721.

World Bank. (2009). Gender in agriculture sourcebook. Washington, DC: Author

Xue, J. y Ren, L. (2016). Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China. Agricultural Water Management, 178, 350-365.

Published

2024-01-05

How to Cite

Melo León, S. F., Romero Otálora, G. D., Buitrago, D. A., Caterine Riveros, L., Díaz Giraldo, C., & Roa-Ortiz, S. A. (2024). Estimated effects of climate variability on agricultural production in Colombia: Estimated effects of climate variability on agricultural production in Colombia. E-CUCBA, (21), 133–141. https://doi.org/10.32870/e-cucba.vi21.330

Most read articles by the same author(s)