Effect of thermal processing on mineral content, phenolic compounds, and antioxidant activity of bean (Phaseolus vulgaris L.) grain

Effect of thermal processing on mineral content, phenolic compounds, and antioxidant activity of bean (Phaseolus vulgaris L.) grain

Authors

  • Brenda Yudith Gómez-Pérez Universidad Autónoma de Tamaulipas.
  • Araceli Minerva Vera-Guzmán Instituto Politécnico Nacional, CIIDIR-Oaxaca.
  • José Luis Chávez-Servia Instituto Politécnico Nacional, CIIDIR-Oaxaca.
  • Prisciliano Diego Flores Instituto Politécnico Nacional, CIIDIR-Oaxaca.
  • Mónica Lilian Pérez Ochoa Instituto Politécnico Nacional, CIIDIR-Oaxaca.

Keywords:

Bioactive compounds, micro and macronutrients minerals, thermic treatment of grains

Abstract

Common bean grains are source of mineral nutriments and phenolic compounds, but the thermic process of cooking in water modify substantially their chemical composition and the final bioavailable fraction is variable on base to variety. The aim was evaluated the changes on mineral micro and microelement contents, in phenolic compounds and antioxidant activity in grain as result of the water cooking effect based in the evaluation of local collection of pigmented bean populations from Oaxaca. Mineral content in grain samples with and without cooking of five accessions or populations of common bean was determined by inductively coupled plasma–optical emission spectrometry, and thermic effect in polyphenols, flavonoids, anthocyanins and antioxidant activity (DPPH and FRAP) was evaluated by spectrophotometry UV-vis. The cooking process change substantially the grain composition; for example, the Cu, Fe, Mg, K and S content decreased and this response patterns presented high variability among accessions. In phenolic compounds and antioxidant activity the cooking produced a drastic reduction from 50% or more in polyphenols, flavonoids, anthocyanins and antioxidant activity (DPPH and FRAP) and indicate that practice common at home of beans cooking produce denaturation of bioactive compounds and their antioxidant activity, but the final fraction available is relevant for the health.

References

Aquino-Bolaños, E. N., García-Díaz, Y. D., Chávez-Servia, J. L., Carrillo-Rodríguez, J. C., Vera-Guzmán, A. M., y Heredia-García, E. (2016). Anthocyanins, polyphenols, flavonoids and antioxidant activity in common bean (Phaseolus vulgaris L.) landraces. Emirates Journal of Food and Agriculture, 28(8), 581–588. https://doi.org/10.9755/ejfa.2016-02-147

Audu, S. S., y Aremu, M. O. (2011). Effect of processing on chemical composition of red kidney bean (Phaseolus vulgaris L.) flour. Pakistan Journal of Nutrition, 10(11), 1069–1075.

Augustin, J., Beck, C. B., Kalbfleish, G., Kagel, L. C., y Matthews, R. H. (1981). Variation in the vitamin and mineral content of raw and cooked commercial Phaseolus vulgaris classes. Journal of Food Science, 46(6), 1701–1706. https://doi.org/10.1111/j.1365-2621.1981.tb04467.x

Baptista, A., Pinho, O., Pinto, E., Casal, S., Mota, C., y Ferreira, I. M. (2017). Characterization of protein and fat composition of seeds from common beans (Phaseolus vulgaris L.), cowpea (Vigna unguiculata L. Walp) and bambara groundnuts (Vigna subterranea L. Verdc) from Mozambique. Journal of Food Measurement and Characterization, 11(2), 442–450. https://doi.org/10.1007/s11694-016-9412-2

Barros-Valeros, M. C. (2015). Frijolitos de la olla. Revista UNAM, 16(2), 1607–6079.

Benzie, F. F., y Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry, 239(1), 70–76.

Brand-Williams, W., Cuvelier, M. E., y Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.

Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., y Vanderleyden, J. (2003). Beans (Phaseolus spp.) – model food legumes. Plant and Soil, 252(1), 55–128.

Capistrán-Carabarin, A., Aquino-Bolaños, E. N., García-Díaz, Y. D., Chávez-Servia, J. L., Vera-Guzmán, A. M., y Carrillo-Rodríguez, J. C. (2019). Complementarity in phenolic compounds and the antioxidant activities of Phaseolus coccineus L. and P. vulgaris L. landraces. Foods, 8(8), Artículo 295. https://doi.org/10.3390/foods8080295

Carvalho, L. J., Corrêa, M., Pereira, E., Nutti, M., Carvalho-Ribeiro, J. V. E. G., y Freitas, S. (2012). Iron and zinc retention in common beans (Phaseolus vulgaris L.) after home cooking. Food & Nutrition Research, 56(1), Artículo 15618. https://doi.org/10.3402/fnr.v56i0.15618

Celmeli, T., Sari, H., Canci, H., Sari, D., Adak, A., Eker, T., y Toker, C. (2018). The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy, 8(9), Artículo 166. https://doi.org/10.3390/agronomy8090166

Chávez-Servia, J. L., Heredia-García, E., Mayek-Pérez, N., Aquino-Bolaños, E. N., Hernández-Delgado, S., Carrillo-Rodríguez, J. C., Gill-Langarica, H. R., y Vera-Guzmán, A. M. (2016). Diversity of common bean (Phaseolus vulgaris L.) landraces and the nutritional value of their grains. En A. K. Goyal (Ed.), Grain legumes (pp. 1–33). IntechOpen. https://doi.org/10.5772/63439

Corzo-Ríos, L. J., Sánchez-Chino, X. M., Cardador-Martínez, A., Martínez-Herrera, J., y Jiménez-Martínez, C. (2020). Effect of cooking on nutritional and non-nutritional compounds in two species of Phaseolus (P. vulgaris and P. coccineus) cultivated in Mexico. International Journal of Gastronomy and Food Science, 20, 100206. https://doi.org/10.1016/j.ijgfs.2020.100206

De Oliveira, A. P., Oliveira, M. B. S., Fioroto, A. M., Oliveira, P. V., y Naozuka, J. (2018). Effect of cooking on the bioaccessibility of essential elements in different varieties of beans (Phaseolus vulgaris L.). Journal of Food Composition and Analysis, 67, 135–140. https://doi.org/10.1016/j.jfca.2018.01.012

Espinosa-Pérez, E. N., Ramírez-Vallejo, P., Crosby-Galván, M. M., Estrada-Gómez, J. A., Lucas-Florentino, B., y Chávez-Servia, J. L. (2015). Clasificación de poblaciones nativas de frijol común del centro-sur de México por morfología de semilla. Revista Fitotecnia Mexicana, 38(1), 29–38.

Espinoza-García, N., Martínez-Martínez, R., Chávez-Servia, J. L., Vera-Guzmán, A. M., Carrillo-Rodríguez, J. C., Heredia-García, E., y Velasco-Velasco, V. A. (2016). Contenido de minerales en semilla de poblaciones nativas de frijol común (Phaseolus vulgaris L.). Revista Fitotecnia Mexicana, 39(3), 215–223.

Faria, M. A., Araújo, A., Pinto, E., Oliveira, C., Oliva-Teles, M. T., Almeida, A., y Ferreira, I. M. (2018). Bioaccessibility and intestinal uptake of minerals from different types of home-cooked and ready-to-eat beans. Journal of Functional Foods, 50, 201–209. https://doi.org/10.1016/j.jff.2018.10.001

Ganesan, K., y Xu, B. (2017). Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. International Journal of Molecular Sciences, 18(11), Artículo 2331. https://doi.org/10.3390/ijms18112331

Gouveia, C. S., Freitas, G., de Brito, J. H., Slaski, J. J., y de Carvalho, M. Â. P. (2014). Nutritional and mineral variability in 52 accessions of common bean varieties (Phaseolus vulgaris L.) from Madeira Island. Agricultural Sciences, 5(4), 317–329. https://doi.org/10.4236/as.2014.54034

Granito, M., Torres, A., Frías, J., Guerra, M., y Vidal-Valverde, C. (2005). Influence of fermentation on the nutritional value of two varieties of Vigna sinensis. European Food Research and Technology, 220(2), 176–181.

Kamau, E. H., Nkhata, S. G., y Ayua, E. O. (2020). Extrusion and nixtamalization conditions influence the magnitude of change in the nutrients and bioactive components of cereals and legumes. Food Science and Nutrition, 8(4), 1753–1765.

Korus, J., Gumul, D., y Czechowska, K. (2007). Effect of extrusion on the phenolic composition and antioxidant activity of dry beans of Phaseolus vulgaris L. Food Technology and Biotechnology, 45(2), 139–146.

Martínez-López, L., Zapata-Martelo, E., Ayala-Carrillo, M. D. R., Martínez-Corona, B., Vázquez-Carrillo, G., Jacinto-Hernández, C., y Espinosa-Calderón, A. (2018). Conocimiento práctico y teórico de maíz y frijol en la región triqui Alta, Oaxaca. Revista Mexicana de Ciencias Agrícolas, 9(1), 111–121. https://doi.org/10.29312/remexca.v9i1.852

Naozuka, J., y Oliveira, P. V. (2012). Cooking effects on iron and proteins content of beans (Phaseolus vulgaris L.) by GF AAS and MALDI-TOF MS. Journal of the Brazilian Chemical Society, 23(1), 156–162.

Rocha-Guzmán, N. E., González-Laredo, R. F., Ibarra-Pérez, F. J., Nava-Berumen, C. A., y Gallegos-Infante, J. A. (2007). Effect of pressure cooking on the antioxidant activity of extracts from three common bean (Phaseolus vulgaris L.) cultivars. Food Chemistry, 100(1), 31–35. https://doi.org/10.1016/j.foodchem.2005.09.005

Rousseau, S., Celus, M., Duijsens, D., Gwala, S., Hendrickx, M., y Grauwet, T. (2020). The impact of postharvest storage and cooking time on mineral bioaccessibility in common beans. Food and Function, 11(9), 7584–7595. https://doi.org/10.1039/D0FO01302A

Santiago-Ramos, D., Figueroa-Cárdenas, J. D., Vélez-Medina, J. J., y Salazar, R. (2018). Physicochemical properties of nixtamalized black bean (Phaseolus vulgaris L.) flours. Food Chemistry, 240, 456–462. https://doi.org/10.1016/j.foodchem.2017.07.156

SAS Institute Inc. (2000). SAS® Procedures Guide (Versión 8).

Singleton, V. L., y Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

Teixeira-Guedes, C. I., Oppolzer, D., Barros, A. I., y Pereira-Wilson, C. (2019). Impact of cooking method on phenolic composition and antioxidant potential of four varieties of Phaseolus vulgaris L. and Glycine max L. LWT - Food Science and Technology, 103, 238–246. https://doi.org/10.1016/j.lwt.2019.01.010

Téllez-Téllez, P., San Vicente, A. A., Buendía-González, M. O., Mendoza, J. V., y Carrillo, G. V. (2009). Optimización de nixtamalización de frijol (Phaseolus vulgaris L.) y desarrollo de un nuevo producto alimenticio. Ingeniería Agrícola y Biosistemas, 1(1), 25–31.

Trumbo, P., Yates, A. A., Schlicker, S., y Poos, M. (2001). Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the American Dietetic Association, 101(3), 294–301.

Wang, N., Hatcher, D. W., Tyler, R. T., Toews, R., y Gawalko, E. J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Research International, 43(2), 589–594. https://doi.org/10.1016/j.foodres.2009.07.012

Wrolstad, R. E. (1976). Color and pigment analyses in fruit products (Station Bulletin 624). Agricultural Experimental Station of Oregon State University.

Xu, B. J., y Chang, S. K. C. (2008). Total phenolic content and antioxidant properties of eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. Journal of Food Science, 73(2), H19–H27.

Xu, B. J., y Chang, S. K. C. (2011). Reduction of antiproliferative capacities, cell-based antioxidant capacities and phytochemical contents of common beans and soybeans upon thermal processing. Food Chemistry, 129(3), 974–981. https://doi.org/10.1016/j.foodchem.2011.05.057

Zhishen, J., Mengcheng, T., y Jianming, W. (1999). The determination of flavonoids contents in mulberry and their scavenging effects in superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

Published

2026-01-01

How to Cite

Gómez-Pérez, B. Y., Vera-Guzmán, A. M., Chávez-Servia, J. L., Diego Flores, P., & Pérez Ochoa, M. L. (2026). Effect of thermal processing on mineral content, phenolic compounds, and antioxidant activity of bean (Phaseolus vulgaris L.) grain : Effect of thermal processing on mineral content, phenolic compounds, and antioxidant activity of bean (Phaseolus vulgaris L.) grain . E-CUCBA, (27), 16–23. Retrieved from http://e-cucba.cucba.udg.mx/index.php/e-Cucba/article/view/410

Most read articles by the same author(s)