Grelina y autofagia: nuevas perspectivas terapéuticas en enfermedades neurodegenerativas
Ghrelin and autophagy: new therapeutic perspectives in neurodegenerative diseases
DOI:
https://doi.org/10.32870/e-cucba.vi25.389Palabras clave:
Grelina, GHS-R1a, neuroprotección, autofagia, enfermedad de Alzheimer, enfermedad de ParkinsonResumen
La grelina es una hormona peptídica que se produce en el estómago, identificada en 1999 como una señal clave en la regulación del apetito. No obstante, estudios recientes revelan que su función va más allá del sistema endocrino, ya que participa en procesos fundamentales como la homeostasis energética, la neurogénesis, la plasticidad sináptica, la cognición y la regulación emocional. En el sistema nervioso central, la grelina atraviesa la barrera hematoencefálica y actúa sobre el receptor GHS-R1a en estructuras como el hipotálamo, el hipocampo y la corteza cerebral, donde modula tanto la ingesta alimentaria como procesos de memoria y aprendizaje. Además, promueve la autofagia a través de las vías AMPK/mTOR y el sistema ubiquitina-proteasoma, lo que favorece la eliminación de proteínas mal plegadas y el mantenimiento de la homeostasis neuronal. Estas acciones resultan especialmente relevantes la enfermedad de Alzheimer y la enfermedad de Parkinson, donde la grelina ha mostrado reducir la acumulación de β-amiloide y proteger neuronas dopaminérgicas. Su acción antioxidante, antiinflamatoria y reguladora de la ferroptosis refuerza su potencial terapéutico. En esta revisión se analizan las evidencias experimentales y preclínicas sobre el efecto neuroprotector de la grelina, enfocándose en la autofagia como una estrategia emergente en el tratamiento de estas patologías.
Citas
Akalu, Y., Molla, M. D., Dessie, G. y Ayelign, B. (2020). Physiological effect of ghrelin on body systems. International journal of endocrinology, 2020(1), 1385138. https://doi.org/10.1155/2020/1385138
Bai, J., Wang, Y., Li, Y., Liu, Y. y Wang, S. (2024). Protective effect of ghrelin in oxidative stress-induced age-related macular degeneration in vitro and in vivo. Molecular Medicine, 30(1), 142. https://doi.org/10.1186/s10020-024-00920-w
Buckinx, A., De Bundel, D., Kooijman, R., & Smolders, I. (2021). Targeting the ghrelin receptor as a novel therapeutic option for epilepsy. Biomedicines, 10(1), 53. https://doi.org/10.3390/biomedicines10010053
Cecarini, V., Bonfili, L., Cuccioloni, M., Keller, J. N., Bruce-Keller, A. J. y Eleuteri, A. M. (2016). Effects of Ghrelin on the Proteolytic Pathways of Alzheimer’s Disease Neuronal Cells. Molecular Neurobiology, 53(5), 3168-3178. https://doi.org/10.1007/s12035-015-9227-x
Cowan, E., Burch, K. J., Green, B. D. y Grieve, D. J. (2016). Obestatin as a key regulator of metabolism and cardiovascular function with emerging therapeutic potential for diabetes. British Journal of Pharmacology, 173(14), 2165-2181. https://doi.org/10.1111/bph.13502
Davies, J. S. (2022). Ghrelin mediated hippocampal neurogenesis. Vitamins and Hormones, 118, 337-367. https://doi.org/10.1016/bs.vh.2021.12.003
Davis, E. A., Wald, H. S., Suarez, A. N., Zubcevic, J., Liu, C. M., Cortella, A. M., ... y Kanoski, S. E. (2020). Ghrelin signaling affects feeding behavior, metabolism, and memory through the vagus nerve. Current Biology, 30(22), 4510-4518. https://doi.org/10.1016/j.cub.2020.08.069
Davis, T. R., Pierce, M. R., Novak, S. X., & Hougland, J. L. (2021). Ghrelin octanoylation by ghrelin O-acyltransferase: Protein acylation impacting metabolic and neuroendocrine signalling. Open Biology, 11(7), 210080. https://doi.org/10.1098/rsob.210080
Elhassan, Y. H. (2023). Anti-inflammatory, anti-apoptotic, and antioxidant effects of obestatin on the colonic mucosa following acetic acid–induced colitis. Folia Morphologica, 82(3), 641-655. https://doi.org/10.5603/FM.a2022.0071
Festa, B. P., Siddiqi, F. H., Jimenez-Sanchez, M., Won, H., Rob, M., Djajadikerta, A., Stamatakou, E. y Rubinsztein, D. C. (2023). Microglial-to-neuronal CCR5 signaling regulates autophagy in neurodegeneration. Neuron, 111(13), 2021-2037.e12. https://doi.org/10.1016/j.neuron.2023.04.006
Ferré, G., Louet, M., Saurel, O., Delort, B., Czaplicki, G., M'Kadmi, C., Damian, M., Renault, P., Cantel, S., Gavar, L., Demange, P., Marie, J., Fehrentz, J.-A., Floquet, N., Milon, A. y Banères, J.-L. (2019). Structure and dynamics of G protein-coupled receptor-bound ghrelin reveal the critical role of the octanoyl chain. Proceedings of the National Academy of Sciences of the United States of America, 116(35), 17525-17530. https://doi.org/10.1073/pnas.1905105116
Gahete, M. D., Rincón-Fernández, D., Villa-Osaba, A., Hormaechea-Agulla, D., Ibáñez-Costa, A., Martínez-Fuentes, A. J., Gracia-Navarro, F., Castaño, J. P. y Luque, R. M. (2014). Ghrelin gene products, receptors, and GOAT enzyme: Biological and pathophysiological insight. Journal of Endocrinology, 220(1), R1-R24. https://doi.org/10.1530/JOE-13-0391
Guo, Y. y Zhang, L. (2023). Ghrelin inhibits NLRP3 inflammasome activation by upregulating autophagy to improve Alzheimer’s disease. In Vitro Cellular & Developmental Biology-Animal, 59(9), 665-673. https://doi.org/10.1007/s11626-023-00818-7
Guo, Y., Zhao, J., Liu, X., Lu, P., Liang, F., Wang, X., Wu J. y Hai, Y. (2025). Ghrelin Induces Ferroptosis Resistance and M2 Polarization of Microglia to Alleviate Neuroinflammation and Cognitive Impairment in Alzheimer’s Disease. Journal of Neuroimmune Pharmacology, 20(1), 1-22. https://doi.org/10.1007/s11481-024-10165-3
Gupta, S. y Mitra, A. (2021). Heal the heart through gut (hormone) ghrelin: a potential player to combat heart failure. Heart Failure Reviews, 26, 417-435. https://doi.org/10.1007/s10741-020-10032-2
He, Q., Wang, L., Wang, F. y Zhang, H. (2020). Acylated Ghrelin is Protective Against 6-OHDA-induced Neurotoxicity by Regulating Autophagic Flux. Frontiers in Pharmacology, 11, 586302. https://doi.org/10.3389/fphar.2020.586302
Heppner, K. M., Chaudhary, N., Müller, T. D., Kirchner, H., Habegger, K. M., Ottaway, N., Smiley, D. L., Dimarchi, R., Hofmann, S. M., Woods, S. C., Sivertsen, B., Holst, B., Pfluger, P. T., Perez-Tilve, D. y Tschöp, M. H. (2012). Acylation type determines ghrelin’s effects on energy homeostasis in rodents. Endocrinology, 153(10), 4687-4695. https://doi.org/10.1210/en.2012-1194
Ibrahim, M., Khalife, L., Abdel-Latif, R. y Faour, W. H. (2023). Ghrelin hormone: A new molecular modulator between obesity and glomerular damage. Molecular Biology Reports, 50(11), 10525-10533. https://doi.org/10.1007/s11033-023-08866-8
Jeon, S. G., Hong, S. B., Nam, Y., Tae, J., Yoo, A., Song, E. J., Kim, K. I., Lee, D., Park, J., Lee, S. M., Kim, J. I. y Moon, M. (2019). Ghrelin in Alzheimer's disease: Pathologic roles and therapeutic implications. Ageing research reviews, 55, 100945. https://doi.org/10.1016/j.arr.2019.100945
Jeong, Y. O., Shin, S. J., Park, J. Y., Ku, B. K., Song, J. S., Kim, J. J., Jeon, S. G., Lee, S. M. y Moon, M. (2018). MK-0677, a Ghrelin Agonist, Alleviates Amyloid Beta-Related Pathology in 5XFAD Mice, an Animal Model of Alzheimer's Disease. International journal of molecular sciences, 19(6), 1800. https://doi.org/10.3390/ijms19061800
Jiao, L., Du, X., Jia, F., Li, Y., Zhu, D., Tang, T., Jiao, Q. y Jiang, H. (2021). Early low-dose ghrelin intervention via miniosmotic pumps could protect against the progressive dopaminergic neuron loss in Parkinson's disease mice. Neurobiology of aging, 101, 70-78. https://doi.org/10.1016/j.neurobiolaging.2021.01.011
Jhuo, C.F., Hsieh, S.K., Chen, C.J., Chen, W.Y. y Tzen, J.T.C. (2022). Teaghrelin protected dopaminergic neurons in MPTP-induced Parkinson’s disease animal model by promoting PINK1/Parkin-mediated mitophagy and AMPK/SIRT1/PGC1-ά-mediated mitochondrial biogenesis. Neuropeptides, 87, 102134. https://doi.org/10.1016/j.npep.2021.102134
Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H. y Kangawa, K. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402(6762), 656-660. https://doi.org/10.1038/45230
Kunath, N., Müller, N. C. J., Tonon, M., Konrad, B. N., Pawlowski, M., Kopczak, A., Elbau, I., Uhr, M., Kühn, S., Repantis, D., Ohla, K., Müller, T. D., Fernández, G., Tschöp, M., Czisch, M., Steiger, A. y Dresler, M. (2016). Ghrelin modulates encoding-related brain function without enhancing memory formation in humans. NeuroImage, 142, 465-473. https://doi.org/10.1016/j.neuroimage.2016.07.016
Li, N., Li, N., Xu, F., Yu, M., Qiao, Z. y Zhou, Y. (2021). Selectively increasing GHS-R1a expression in dCA1 excitatory/inhibitory neurons have opposite effects on memory encoding. Molecular Brain, 14, 1-4. https://doi.org/10.1186/s13041-021-00866-8
Li, N., Xiao, K., Mi, X., Li, N., Guo, L., Wang, X., Sun, Y., Dong-Li, G. y Zhou, Y. (2022). Ghrelin signaling in dCA1 suppresses neuronal excitability and impairs memory acquisition via PI3K/Akt/GSK-3β cascades. Neuropharmacology, 203, 108871. https://doi.org/10.1016/j.neuropharm.2021.108871
Liu, Y., Wang, W., Song, N., Jiao, L., Jia, F., Du, X. y Jiang, H. (2021). Early low-dose ghrelin intervention via miniosmotic pumps could protect against the progressive dopaminergic neuron loss in Parkinson’s disease mice. Brain Research, 1757, 147308. https://doi.org/10.1016/j.brainres.2021.147308
Liu, Y., Wang, W., Song, N., Jiao, L., Jia, F., Du, X., Chen, X., Yan, C., Jiao, J., Jiao, Q. y Jian, H. (2022). Ghrelin Bridges DMV Neuropathology and GI Dysfunction in the Early Stages of Parkinson’s Disease. Advanced Science, 9(30), e2203020. https://doi.org/10.1002/advs.202203020
Mengr, A., Šmotková, Z., Pačesová, A., Železná, B., Kuneš, J. y Maletínská, L. (2025). Reduction of Neuroinflammation as a Common Mechanism of Action of Anorexigenic and Orexigenic Peptide Analogues in the Triple Transgenic Mouse Model of Alzheimer´ s Disease. Journal of Neuroimmune Pharmacology, 20(1), 18. https://doi.org/10.1007/s11481-025-10174-w
Mizushima, N. y Levine, B. (2020). Autophagy in Human Diseases. New England Journal of Medicine, 383 (16), 1564-1576. https://doi.org/10.1056/NEJMra2022774
Moon, M., Choi, J. G., Nam, D. W., Hong, H. S., Choi, Y. J., Oh, M. S. y Mook-Jung, I. (2011). Ghrelin ameliorates cognitive dysfunction and neurodegeneration in intrahippocampal amyloid-β1-42 oligomer-injected mice. Journal of Alzheimer’s Disease, 23(1), 147-159. https://doi.org/10.3233/JAD-2010-101263
Moon, M., Cha, M. Y. y Mook-Jung, I. (2014). Impaired hippocampal neurogenesis and its enhancement with ghrelin in 5XFAD mice. Journal of Alzheimer’s Disease, 41(1), 233-241. https://doi.org/10.3233/JAD-132417
Morgan, A. H., Rees, D. J., Andrews, Z. B. y Davies, J. S. (2018). Ghrelin mediated neuroprotection - A possible therapy for Parkinson's disease?. Neuropharmacology, 136(Pt B), 317–326. https://doi.org/10.1016/j.neuropharm.2017.12.027
Moujalled, D., Strasser, A. y Liddell, J. R. (2021). Molecular mechanisms of cell death in neurological diseases. Cell death and differentiation, 28(7), 2029-2044. https://doi.org/10.1038/s41418-021-00814-y
Nutma, S., Beishuizen, A., Van Den Bergh, W. M., Foudraine, N. A., Le Feber, J., Filius, P. M. G., Cornet, A. D., Van Der Palen, J., Van Putten, M. J. A. M. y Hofmeijer, J. (2024). Ghrelin for Neuroprotection in Post-Cardiac Arrest Coma: A Randomized Clinical Trial. JAMA Neurology, 81(6), 603-610. https://doi.org/10.1001/jamaneurol.2024.1088
Platz, K. R., Rudisel, E. J., Paluch, K. V., Laurin, T. R. y Dittenhafer-Reed, K. E. (2023). Assessing the Role of Post-Translational Modifications of Mitochondrial RNA Polymerase. International Journal of Molecular Sciences, 24(22), 16050. https://doi.org/10.3390/ijms242216050
Rees, D., Beynon, A. L., Lelos, M. J., Smith, G. A., Roberts, L. D., Phelps, L., Dunnett, S. B., Morgan, A. H., Brown, R. M., Wells, T. y Davies, J. S. (2023). Acyl-Ghrelin Attenuates Neurochemical and Motor Deficits in the 6-OHDA Model of Parkinson's Disease. Cellular and molecular neurobiology, 43(5), 2377-2384. https://doi.org/10.1007/s10571-022-01282-9
Reich, N. y Hölscher, C. (2020). Acylated ghrelin as a multi-targeted therapy for Alzheimer's and Parkinson's disease. Frontiers in Neuroscience, 14, 614828. https://doi.org/10.3389/fnins.2020.614828
Russo, C., Valle, M. S., Russo, A. y Malaguarnera, L. (2022). The Interplay between Ghrelin and Microglia in Neuroinflammation: Implications for Obesity and Neurodegenerative Diseases. International journal of molecular sciences, 23(21), 13432. https://doi.org/10.3390/ijms232113432
Sarlaki, F., Shahsavari, Z., Goshadrou, F., Naseri, F., Keimasi, M. y Sirati-Sabet, M. (2022). The effect of ghrelin on antioxidant status in the rat’s model of Alzheimer’s disease induced by amyloid-beta. BioMedicine, 12(4), 44. https://doi.org/10.37796/2211-8039.1341
Segers, A., Desmet, L., Sun, S., Verbeke, K., Tack, J. y Depoortere, I. (2020). Night-time feeding of Bmal1-/- mice restores SCFA rhythms and their effect on ghrelin. Journal of Endocrinology, 245(1), 155-164. https://doi.org/10.1530/JOE-20-0011
Seim, I., Jeffery, P. L., Thomas, P. B., Walpole, C. M., Maugham, M., O’Keeffe, A. J., Whiteside, E. J., Herington, A. C. y Chopin, L. K. (2016). Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide. Endocrine, 52(3), 609-617. https://doi.org/10.1007/s12020-015-0848-7
Sevigny, J. J., Ryan, J. M., van Dyck, C. H., Peng, Y., Lines, C. R., Nessly, M. L. y MK-677 Protocol 30 Study Group (2008). Growth hormone secretagogue MK-677: no clinical effect on AD progression in a randomized trial. Neurology, 71(21), 1702-1708. https://doi.org/10.1212/01.wnl.0000335163.88054.e7
Shen, Y., Zhang, Y., Du, J., Jiang, B., Shan, T., Li, H., Bao, H. y Si, Y. (2021). CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway. Journal of neuroinflammation, 18(1), 246. https://doi.org/10.1186/s12974-021-02300-1
Shibata, N., Ohnuma, T., Kuerban, B., Komatsu, M. y Arai, H. (2011). Genetic association between ghrelin polymorphisms and Alzheimer's disease in a Japanese population. Dementia and geriatric cognitive disorders, 32(3), 178-181. https://doi.org/10.1159/000333075
Shiimura, Y., Horita, S., Hamamoto, A., Asada, H., Hirata, K., Tanaka, M., Mori, K., Uemura, T., Kobayashi, T., Iwata S. y Kojima, M. (2020). Structure of an antagonist-bound ghrelin receptor reveals possible ghrelin recognition mode. Nature Communications, 11(1), 4160. https://doi.org/10.1038/s41467-020-17554-1
Shiimura, Y., Kojima, M. y Sato, T. (2025). How the ghrelin receptor recognizes the acyl-modified orexigenic hormone. Frontiers in Molecular Neuroscience, 18, 1549366. https://doi.org/10.3389/fnmol.2025.1549366
Skoracka, K., Hryhorowicz, S., Schulz, P., Zawada, A., Ratajczak-Pawłowska, A. E., Rychter, A. M., Słomski, R., Dobrowolska, A. y Krela-Kaźmierczak, I. (2025). The role of leptin and ghrelin in the regulation of appetite in obesity. Peptides, 186, 171367. https://doi.org/10.1016/j.peptides.2025.171367
Tian, J., Du, E., Jia, K., Wang, T., Guo, L., Zigman, J. M. y Du, H. (2023a). Elevated Ghrelin Promotes Hippocampal Ghrelin Receptor Defects in Humanized Amyloid-β Knockin Mice During Aging. Journal of Alzheimer's Disease, 96(4), 1579-1592. https://doi.org/10.3233/JAD-231002
Tian, J., Wang, T. y Du, H. (2023b). Ghrelin system in Alzheimer's disease. Current opinion in neurobiology, 78, 102655. https://doi.org/10.1016/j.conb.2022.102655
Thomas, A. S., Sassi, M., Angelini, R., Morgan, A. H. y Davies, J. S. (2022). Acylation, a conductor of ghrelin function in brain health and disease. Frontiers in Physiology, 13, 831641. https://doi.org/10.3389/fphys.2022.831641
Veiga, L., Brito, M., Silva, C. y Silva-Nunes, J. (2020). Glucose homeostasis in obese women is not associated to unacylated ghrelin plasma levels. Biomarker Insights, 15, 1177271920928923. https://doi.org/10.1177/1177271920928923
Wan, S., Zhang, G., Liu, R., Abbas, M. N. y Cui, H. (2023). Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment. Cell communication and signaling: CCS, 21(1), 115. https://doi.org/10.1186/s12964-023-01108-1
Wang, H., Dou, S., Zhu, J. y Cheng, B. (2020). Ghrelin mitigates MPP+-induced cytotoxicity: Involvement of ERK1/2-mediated Nrf2/HO-1 and endoplasmic reticulum stress PERK signaling pathway. Neuropeptides, 83, 102075. https://doi.org/10.1016/j.npep.2020.102075.
Wang, H., Dou, S., Zhu, J. y Cheng, B. (2021). Ghrelin protects against rotenone-induced cytotoxicity: Involvement of mitophagy and the AMPK/SIRT1/PGC1ά pathway. Neuropeptides, 85, 102133. https://doi.org/10.1016/j.npep.2020.102133
Wang, C. H., Tseng, C. Y., Hsu, W. L. y Tzen, J. T. C. (2025). Nuezhenide of the fruits of Nuzhenzi (Ligustrum lucidum Ait.) is a functional analog of ghrelin. Journal of ethnopharmacology, 339, 119108. https://doi.org/10.1016/j.jep.2024.119108
Wu, J., Han, Y., Xu, H., Sun, H., Wang, R., Ren, H. y Wang, G. (2023). Deficient chaperone-mediated autophagy facilitates LPS-induced microglial activation via regulation of the p300/NF-κB/NLRP3 pathway. Science advances, 9(40), eadi8343. https://doi.org/10.1126/sciadv.adi8343
Xu, X., Sun, Y., Cen, X., Shan, B., Zhao, Q., Xie, T., Wang, Z., Hou, T., Xue, Y., Zhang, M., Peng, D., Sun, Q., Yi, C., Najafov, A. y Xia, H. (2021). Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein & cell, 12(10), 769-787. https://doi.org/10.1007/s13238-021-00858-3
Yin, T. C., Bauchle, C. J., Rouault, A. A. J., Stephens, S. B. y Sebag, J. A. (2020). The insulinostatic effect of ghrelin requires MRAP2 expression in δ cells. iScience, 23(6), 101216. https://doi.org/10.1016/j.isci.2020.101216:contentReference[oaicite:3]{index=3}
Yuan, M.-J., Li, W. y Zhong, P. (2021). Research progress of ghrelin on cardiovascular disease. Bioscience Reports, 41(1), BSR20203387. https://doi.org/10.1042/BSR20203387
Yuan, M. J. y Wang, T. (2020). The new mechanism of Ghrelin/GHSR-1a on autophagy regulation. Peptides, 126, 170264. https://doi.org/10.1016/j.peptides.2020.170264
Zhang, X., Zeng, Z., Liu, Y. y Liu, D. (2023). Emerging relevance of ghrelin in programmed cell death and its application in diseases. International Journal of Molecular Sciences, 24(24), 17254. https://doi.org/10.3390/ijms242417254
Zhang, X., Tang, B. y Guo, J.(2023b). Parkinson’s disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Translational Neurodegeneration, 12(1), 59. https://doi.org/10.1186/s40035-023-00392-8
Zhang, M., Yang, L., Jia, J., Xu, F., Gao, S., Han, F., Deng, M., Wang, J., Li, V., Yu, M., Sun, Y., Yuan, H., Zhou, Y. y Li, N. (2024). Increased GHS-R1a expression in the hippocampus impairs memory encoding and contributes to AD-associated memory deficits. Communications Biology, 7(1), 1334. https://doi.org/10.1038./s42003-024-06914-y
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Mónica Ayub Ayala, Kenia Pardo Peña, Consuelo Ventura Mejía, Juan Carlos Salazar Sánchez, Laura Guadalupe Medina Ceja

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.