Sinergismo antibacterial de la cepa G. sichuanense Gc73 y poliaminas en bacterias gram-positivas

Antibacterial Synergism of cepa Ganoderma sichuanese Gc73 and polyamines on gram-positive bacteria

Autores/as

  • Ramón Reynoso-Orozco Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Luis Alberto Barajas-Villegas Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Sergio Fausto-Guerra Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Cecilia Jiménez Plascencia Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Teresa de Jesús Jaime Ornelas Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.
  • Benito Donato Minjarez Vega Universidad de Guadalajara. Centro Universitario de Ciencias Biológicas y Agropecuarias.

DOI:

https://doi.org/10.32870/e-cucba.vi21.334

Palabras clave:

Cultivo micelial, fraccionamiento, susceptibles, estreptomicina

Resumen

Durante los últimos siglos, las especies del complejo Ganoderma lucidum se han utilizado en la medicina tradicional china. “Lingzhi” ha sido usado en Asia por sus propiedades anticancerígenas, inmunomoduladoras, antivirales y antibacterianas. Teniendo en cuenta un micelio aislado de un cultivo vivo etiquetado como la cepa G. sichuanense Gc73, el objetivo de este estudio es determinar las Concentraciones Inhibitorias Mínimas (CIM) a las que se usa el caldo de cultivo de G. sichuanense cepa Gc73 suplementado con tiamina para inhibir diferentes cepas de bacterias, tanto sensibles como resistentes a la estreptomicina. Dicho caldo de cultivo tras ser centrifugado, filtrado a través de una membrana de poro de 0,22 µm o separado por peso de < 3.000 Daltons, demostró la sinergia con PAs contra diferentes cepas de bacterias. Los resultados muestran un efecto antibacteriano frente a los Bacillus subtilis ATCC (ATCC; Manassas, VA, EE. UU.) 6633, Staphylococcus aureus ATCC 6538 y Staphylococcus aureus ATCC 51811, Enterococcus faecalis ATCC 29212 y Micrococcus luteus ATCC 9341. Las cepas fueron probadas en concentraciones de 2.5 a 50 µl del caldo de cultivo suplementado con tiamina por cada ml de caldo Muller Hinton. Incluimos seis cepas de Salmonella spp., previamente aisladas de carne cruda y se utilizó la técnica de electroforesis para determinar la presencia de péptidos antimicrobianos. Los resultados mostraron que estos péptidos solo pueden identificarse en muestras frescas del extracto.

Citas

Albino, E. F., Monache, F. D., Yunes, R. A., Paulert, R. y Junior, A. S. (2007). Antimicrobial activity of methyl australate from Ganoderma austral. Braz. J. Pharmacog, 17(1), 14-16.

Arenas, I., Villegas, E., Walls, O., Barrios, H., Rodríguez, R. y Corzo, G. (2016). Antimicrobial Activity and Stability of Short and Long Based Arachnid Synthetic Peptides in the Presence of Commercial Antibiotics. Molecules, 21, 225 DOI: 10.3390/molecules21020225

Baby, S., Johnson., A. J. y Govindan, B. (2015). Secondary metabolites from Ganoderma. Phytochemistry, 114, 66–101.

Cabarroi-Hernández, M., Decock, C., Welti, S., Amalfi, M., Villalobos-Arámbula, AR., Aliaga-Ramos, D., Morera, G., Macedo-Pérez Sandi, E., Almarales Castro, A. y Guzmán-Dávalos, L. (2023). Ganoderma from Cuba: an approach to some species based on morphology and phylogenetic analyses. Biological Journal of the Linnean Society, blad055. DOI: 10.1093/biolinnean/blad055

Chang, C. J, C. S. Lin, C.C. Lu, J. Martel, Y. F. Ko, D. M. Ojcius, S. F.Tseng, T. R. Wu, Y. Y. Chen, J. D. Young y H. C. Lai. (2015). Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun, 23. DOI: 10.1038/ncomms8489.

Chang, S. T. y Buswell, J. A. (1999). Ganoderma lucidum (lingzhi), a mushrooming medicinal mushroom. Int J Med Mushroom, 11, 1319–1346.

Chang, S. T. (2004). Ganoderma lucidum–a leader of edible and medicinal mushrooms. Int Agri Trade, 90, 22–24.

Choi, U. y Lee, C. R. (2019). Distinct Roles of Outer Membrane Porins in Antibiotic Resistance and Membrane Integrity in Escherichia coli. Front Microbiol, 30, 1-9. DOI: 10.3389/fmicb.2019.00953.

Ćilerdžić, J., Stajic, M. y Vukojevic, J. (2016). Potential of Submergedly Cultivated Mycelia of Ganoderma spp. as Antioxidant and Antimicrobial Agents. Curr Pharm Biotechnol, 17(3), 275-82.

De Silva, D. D., Rapior, S., Fons, F., Bahkali, A. H. et al. (2012). Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. Fungal Diversity, 55, 1–35.

Demain, A. L. (2009). Antibiotics: natural products essential to human health. Med Res Rev, 29(6), 821-42.

Deng, H., Bloomfield, V. A., Benevides, J. M. y G. J. (2000). Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Res. 1, 28(17), 3379-85.

Djide, M. N., Sartini, L. Rahman y N. Hasyim. (2014). Antibacterial Activity of Various Extracts From The Fruiting Bodies Of Ganoderma lucidum Growing At Samanea Saman (Jacq.) Merr) Trunk. Int J Sci & Technol Res, 3(1), 15-16.

Dong-Hun, B., Darius, J. R., Lane, P., Jansson, J. y Des, R. R. (2018). The old and new biochemistry of polyamines. Bbagen. DOI:10.1016/j.bbagen.2018.06.004.

Hadacek, F. y Bachmann, G. (2015). Low-molecular-weight metabolite systems chemistry. Front in Envir Sci Envir Toxicol. (3)12:1-21.

He, MQ., Zhao, RL., Liu, DM., Denchev, TT., Begerow, D., Yurkov, A., Kemler, M., Millanes, AM., Wedin, M., McTaggart, AR., Shivas, RG., Buyck, B., Chen, J., Vizzini, A., Papp, V., Zmitrovich, IV., Davoodian, N., Hyde, KD. (2022). Species diversity of Basidiomycota. Fungal Diversity, 114, 281–325. DOI: 10.1007/s13225-021-00497-3

Igarashi, K. y Kashiwagi, K. (2010). Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol and Biochem. 48. 506e512.

Igarashi, K., Kashiwagi, K. (2010). Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol Biochem, 48(7), 506-512. DOI: 10.1016/j.plaphy.2010.01.017.

Isaka, M., Chinthanom, P., Kongthong, S. y Srichomthong, K. (2013). Lanostane triterpenes from cultures of the Basidiomycete Ganoderma orbiforme BCC 22324. Phytochemistry, 87, 133–139.

Jiao-Jiao, Z., Dai-Wei, W., Dan, C., Qing, L. y Yong-Xian, Ch. (2021). Meroterpenoids From Ganoderma lucidum Mushrooms and Their Biological Roles in Insulin Resistance and Triple-Negative Breast Cancer. Front Chem, 9. DOI: 10.3389/fchem.2021.772740.

Osińska-Jaroszuk, M., Jaszek, M., Mizerska-Dudka, M., Błachowicz, A., Rejczak., TP, Janusz, G., Wydrych, J., Polak, J., Jarosz-Wilkołazka, A., Kandefer-Szerszeń, M. (2014). Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties. Biomed Res Int. DOI: 10.1155/2014/743812.

Jong, S. C. y Birmingham, J. M. (1992). Medicinal benefits of the mushroom Ganoderma. Adv Appl Microbiol, 37, 101–34.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.

Loyd, A. L., Richter, B. S., Jusino, M. A., Truong, C., Smith, M. E., Blanchette, R. A. y Smith, J. A. (2018). Identifying the “Mushroom of Immortality”: Assessing the Ganoderma Species Composition in Commercial Reishi Products. Front. Microbiol. 9, 1557, 1-14. DOI: 10.3389/fmicb.2018.01557

Martínez-Chávez, L., Cabrera-Diaz, E., Pérez-Montaño, J. A., Garay-Martínez, L. E., Varela-Hernández, J. J., Castillo, A., Lucia,L., Ávila-Novoa, M. G., Cardona-López, M. A., Gutiérrez-González, P. y Martínez-Gonzáles, N. E. (2015). Quantitative distribution of Salmonella spp. and Escherichia coli on beef carcasses and raw beef at retail establishments. Int J Food Microbiol, 1(210), 149-155.

Martini, C., Michaux, C., Bugli, F., Arcovito, A., Iavarone, F., Cacaci, M., Paroni Sterbini, F., Hartke, A., Sauvageot, N., Sanguinetti, M., Posteraro, B. y Giard, J. C. (2015). The polyamine N-acetyltransferase-like enzyme PmvE plays a role in the virulence of Enterococcus faecalis. Infect Immun, 83(1), 364-371.

Mojsoska, B. y Jenssen, H. (2015). Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals, 8, 366-415.

Neuhoff, V., Arold, N., Taube, D. y Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 9, 255-262.

Ofodile, L. N., Wanneka, A. O. y Oladipupo, O. (2011). Effect of the Mycelial Culture of Ganoderma lucidum on Human Pathogenic Bacteria. Int J of Biol, 3(2), 111-114.

Ofodile, L. N. (2006). Taxonomy and Antimicrobial Activity of some Basidiomycetous Fungi in Southern Nigeria. PhD Thesis. Department of Botany and Microbiology, University of Lagos. Akoka, Lagos: 6-44.

Paterson, R. R. M. (2006). Ganoderma a therapeutic fungal biofactory. Phytochemistry, 67(18), 1985–2001.

Sanodiya, B. S., Thakur, G. S., Baghel, R. K., Prasad, G. y Bisen, P. S. (2009). Ganoderma lucidum: A Potent Pharmacological Macrofungus. Curr Pharm Biotech, 10(8), 717-742.

Sarnthima, R., Khammaung, S. y Sa-Ard, P. (2017). Culture broth of Ganoderma lucidum exhibited antioxidant, antibacterial and α-amylase inhibitory activities. J Food Sci Technol, 54(11), 3724-3730. DOI: 10.1007/s13197-017-2839-6.

Si, J., Meng, G., Wu, Y., Ma, HF., Cui, BK., Dai, YC. (2019). Medium composition optimization, structural characterization, and antioxidant activity of exopolysaccharides from the medicinal mushroom Ganoderma lingzhi. International Journal of Biological Macromolecules, 124, 1186-1196. DOI: 10.1016/j.ijbiomac.2018.11.274

Suhnel, S., Lagreze, F., Ferreira, J. F., Campestrini, L. H. y Maraschin, M. (2009). Carotenoid extraction from the gonad of the scallop Nodipecten nodosus (Linnaeus, 1758) (Bivalvia: Pectinidae). Braz. J. Biol, 69(1), 209-215.

Tan, B. K. H. y Vanitha, J. (2004). Immunomodulatory and antimicrobial effects of some traditional Chinese medicinal herbs: a review. Curr Med Chem. 11: 1423–1430.

Valentão, P., Fernandes, E., Carvalho, F., Branquinho, P., Seabra, R. y M. Bastos. (2002). Studies on the Antioxidant Activity of Lippia citriodora Infusion: Scavenging Effect on Superoxide Radical, Hydroxyl Radical and Hypochlorous Acid. J Biol. Pharm. Bull, 25(10), 1324-1327.

Vazirian, M., Faramarzi, M. A., Ebrahimi, S. E., Esfahani, H. R., Samadi, N., Hosseini, S. A., Asghari, A., Manayi, A., Mousazadeh, A., Asef, M. R., Habibi, E. y Amanzadeh, Y. (2014). Antimicrobial effect of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes) and its main compounds. Int J Med Mush, 16(1), 77-84.

Wachtel-Galor, S., Yuen, J., Buswell, J. A. y Benzie, I. (2011). Ganoderma lucidum (Lingzhi or Reishi) A Medicinal Mushroom. Major bioactive components; Triterpenes, in: Benzie IFF, Wachtel-Galor S, editors. Herbal Medicine: Biomolecular and Clinical Aspects. (2da edición). Boca Raton (FL): CRC Press/Taylor & Francis.

Wang, H. y Ng, T. B. (2012). Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides, 27(1), 27–30.

Wasser, S. P. y Weis, A. L. (1999). Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (Review). Int J Med Mushrooms, 1, 31–62.

Yihuai, U., Zhau, S., Huang, M. y Xu, A. (2003). Antibacterial and Antiviral Value of the Genus Ganoderma Species (Amphyllophoro mycetideae): A Review. Int J Med Mushrooms, 5, 235-246.

Zuluaga, J., Pérez, C., Angulo, A., Torres, O. y Santafé, G. (2007). Química y actividades antioxidante y bactericida del extracto etanólico del hongo Ganoderma lucidum. Scientia Et Technica, (33), 329-332.

Descargas

Publicado

2024-01-05

Cómo citar

Reynoso-Orozco, R., Barajas-Villegas, L. A., Fausto-Guerra, S., Jiménez Plascencia, C., Jaime Ornelas, T. de J., & Minjarez Vega, B. D. (2024). Sinergismo antibacterial de la cepa G. sichuanense Gc73 y poliaminas en bacterias gram-positivas: Antibacterial Synergism of cepa Ganoderma sichuanese Gc73 and polyamines on gram-positive bacteria. E-CUCBA, (21), 156–166. https://doi.org/10.32870/e-cucba.vi21.334

Artículos más leídos del mismo autor/a